FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS

DISSIPATIVE MODELS OF SPONTANEOUS WAVE-FUNCTION COLLAPSE

ulm university universität

In collaboration with Bassano Vacchini, University of Milan

Erice, 24 March 2015

"They should not have saved the money on the foundations"

1. MOTIVATION:

Bríef íntroductíon to collapse models

• Energy dívergence in GRW and CSL models

2. DISSIPATIVE COLLAPSE MODELS

Momentum-dependent localization operators
Energy relaxation.
Possible experimental effects

1.MOTIVATION: COLLAPSE MODELS AND THE ENERGY DIVERGENCE

Collapse models: challenging the superposition principle

O Unified description of microscopic and macroscopic systems

No superposition of <u>macroscopic</u> systems

A. Bassi & G.C. Ghirardi, Phys. Rep. 2003A. Bassi, K. Lochan, S. Satin, T.P. Singh & H. Ulbricht, Rev. Mod. Phys. 2013M. Arndt & K. Hornberger, Nat. Phys. 2014

O Usual Schrödinger evolution

G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. A 1986

G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. A 1986

Distribution of the jumps

Probability distribution of the localization position:

 $p(y) = \|L_y(\widehat{X})|\psi(t)\rangle\|^2$

Dynamical <u>derivation</u> of the Born's rule

Poisson time-distribution of the jumps

C Localization rate for one nucleon $\lambda = 10^{-16} s^{-1}$ parameter

Microscopic systems are NOT affected by the localization mechanism!

Amplification mechanism: macroscopic systems are strongly affected !

CSL model: SDE and localization

$$d|\varphi_t\rangle = \left[-\frac{i}{\hbar}\hat{H}dt + \frac{\sqrt{\gamma}}{m_0}\int d\mathbf{y}[M(\mathbf{y} - \langle M(\mathbf{y})\rangle_t]dW_t(\mathbf{y}) - \frac{\gamma}{2m_0^2}\int d\mathbf{y}[\hat{M}(\mathbf{y}) - \langle M(\mathbf{y})\rangle_t]^2dt\right]|\varphi_t$$
G.C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 1990
• Smeared mass density operator $\hat{M}(\mathbf{y}) = \sum_j m_j \int \frac{d\mathbf{x}}{(\sqrt{2\pi}r_C)^3} e^{-\frac{|\mathbf{y}-\mathbf{x}|^2}{2r_C^2}}\hat{\psi}_j^{\dagger}(\mathbf{x})\hat{\psi}_j(\mathbf{x})$
It also applies to identical particles !!

$$|\varphi(\mathbf{x})|^2 \qquad |\varphi(\mathbf{x})|^2$$

$$0.8 \qquad 1.0 \qquad 0.4 \qquad 0.2 \qquad 1.2 \qquad 0.4 \qquad 0.2 \qquad 0.4 \qquad 0.4 \qquad 0.2 \qquad 0.4 \qquad 0.4 \qquad 0.2 \qquad 0.4 \qquad 0$$

CSL model: SDE and localization

$$d|\varphi_{t}\rangle = \begin{bmatrix} -\frac{i}{\hbar}\hat{H}dt + \frac{\sqrt{\gamma}}{m_{0}}\int d\mathbf{y}[\hat{M}(\mathbf{y}) - \langle M(\mathbf{y})\rangle_{t}]dW_{t}(\mathbf{y}) - \frac{\gamma}{2m_{0}^{2}}\int d\mathbf{y}[\hat{M}(\mathbf{y}) - \langle M(\mathbf{y})\rangle_{t}]^{2}dt \end{bmatrix} |\varphi_{t}$$
G.C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 1990
Smeared mass density operator $\hat{M}(\mathbf{y}) = \sum_{j} m_{j}\int \frac{d\mathbf{x}}{(\sqrt{2\pi}r_{C})^{3}}e^{-\frac{|\mathbf{y}-\mathbf{x}|^{2}}{2r_{C}^{2}}}\hat{\psi}_{j}^{\dagger}(\mathbf{x})\hat{\psi}_{j}(\mathbf{x})$
It also applies to identical particles !!
 $(\Delta_{t}\mathbf{x})^{2}/r^{2}c$
 $\int \frac{d\mathbf{y}}{(4\pi r_{C}^{2})^{3/2}}$
Localization rate $\lambda_{CSL} = \frac{\gamma}{(4\pi r_{C}^{2})^{3/2}}$

Amplification mechanism in CSL

Collapse rate for the center of mass of a composite object

Quantum properties of microscopic systems (few constituents) Classical properties of macroscopic systems (many constituents)

Quadratic increase with the number of constituents

Specific feature of the action of the noise on identical particles ${\tt \parallel}$

The average energy of the system diverges linearly in time, with a rate $\xi = \frac{\hbar^2 \lambda}{4Mr_c^2} ~\approx 10^{-25} eV \, s^{-1}$

S. Adler & A. Bassi, Science, 325 (2009)

S. Adler JPA, 40 (2007)

 2^{nd} strongest bound on $\Lambda \parallel$

Secular energy increase compatible with **experimental data**

2. DISSIPATIVE COLLAPSE MODELS

A. Smirne, B. Vacchini & A. Bassi, Phys. Rev. A 90, 062135 (2014)A. Smirne & A. Bassi, arXiv:1408.6446 (2014)

Master equation

Statistical operator
$$\hat{\rho}(t) \equiv \mathbb{E}[|\psi(t)\rangle\langle\psi(t)|]$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\frac{i}{\hbar}\left[\hat{H}, \hat{\rho}(t)\right] + \lambda \left(\int \mathrm{d}y \, L_y(\hat{X})\hat{\rho}(t)L_y(\hat{X}) - \hat{\rho}(t)\right)$$

$$= -\frac{i}{\hbar}\left[\hat{H}, \hat{\rho}(t)\right] + \underline{\lambda}\left(\int \mathrm{d}\boldsymbol{\varrho} \, e^{\frac{i}{\hbar}\boldsymbol{\varrho}\cdot\hat{X}}G(\boldsymbol{\varrho})\,\rho(t)\,G(\boldsymbol{\varrho})e^{-\frac{i}{\hbar}\boldsymbol{\varrho}\cdot\hat{X}} - \rho(t)\right)$$
Fourier Transform: $L_y(\hat{X}) = \int \frac{d\boldsymbol{\varrho}}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar}\boldsymbol{\varrho}\cdot(\hat{X}-y)}G(\boldsymbol{\varrho})$
Describes also recoil-free collisional decoherence
$$G(\boldsymbol{\varrho}) = \left(\frac{r_c}{\sqrt{\pi\hbar}}\right)^{3/2} \exp\left(-\frac{r_c^2|\boldsymbol{\varrho}|^2}{2\hbar^2}\right)$$
NO DISSIPATION

O To include dissipation

$$G(\boldsymbol{Q}) \longrightarrow G(\boldsymbol{Q}, \widehat{\boldsymbol{P}})$$

Dissipative localization operators

Dissipative localization operators

Dissipative localization operators

$$L_{y}(\widehat{X}, \widehat{P}) = \int \frac{d\mathcal{Q}}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar}\mathcal{Q}\cdot(\widehat{X}-y)} G(\mathcal{Q}, \widehat{P}) \frac{\hbar}{2mv_{0}r_{C}}$$

$$G(\mathcal{Q}, \widehat{P}) \propto \exp\left(-\frac{r_{C}^{2}}{2\hbar^{2}}\left|(1+k)\mathbf{Q}+2k\hat{\mathbf{P}}\right|^{2}\right)$$

$$Mew \qquad v_{\eta} = \frac{4k_{B}Tr_{C}}{\hbar}$$

$$\sum_{j} \frac{m_j}{(2\pi\hbar)^3} \int d\mathbf{P} d\mathbf{Q} \,\hat{a}_j^{\dagger}(\mathbf{P} + \mathbf{Q}) \, e^{-\frac{i}{\hbar}\mathbf{Q} \cdot \mathbf{y}} \exp\left(-\frac{r_C^2}{2\hbar^2} \left|(1+k_j)\mathbf{Q} + 2k_j\mathbf{P}\right|^2\right) \hat{a}_j(\mathbf{P})$$

Gaussian distribution centered around

 $\frac{-2P_ik_j}{1+k_i} \qquad i=x, y, z$

The action of the noise suppresses high momenta

Approach to equilibrium

0 10

Stationary solution in canonical form
$$\varrho(\hat{\mathbf{P}}) = \left(\frac{\beta}{2m\pi}\right)^{3/2} e^{-\frac{\beta|\hat{\mathbf{P}}|^2}{2m}}$$

Spohn's theorem H.Spohn, Rep. Math. Phys. 10, 189 (1976) &Lett. Math. Phys. 2, 33 (1977)

$$[A, L_k] = 0 \quad \forall k \implies A = C \mathbb{1}$$

The set {L, $k \in I$ } is self-adjoint

Relaxing semigroup: • unique stationary solution

•
$$\lim_{\tau \to \infty} \mathcal{E}_{\tau}(\rho) = \rho_{ss} \quad \forall \rho$$

Collisional dynamics of a tracer particle in a low density background gas (weak coupling regime)

B. Vacchini and K. Hornberger, Phys.Rep. 478, 71 (2009)

Energy relaxation

Mean value of the kinetic energy

$$H_{t} \equiv \mathbb{E}[\langle \psi(t) | \frac{\hat{P}^{2}}{2m} | \psi(t) \rangle] = \operatorname{Tr}\left\{ \hat{\rho}(t) \frac{\hat{P}^{2}}{2m} \right\}$$

Temperature of the noise

Equipartition of the energy

$$T = \frac{2H_{as}}{3k_B} = \frac{\hbar v_{\eta}}{4k_B r_C}$$

It does not depend on the mass of the system

Toward a full reestablishment of the energy conservation: energy exchanged between the system and the noise field

The collapse model is still effective even in the presence of a low-temperature noise ($T \approx 1K < ->v \approx 10^5 m/s$)

Amplification mechanism (updated)

- igcolumber Center of mass of an N-particle system $|arphi_t^{
 m (CM)}
 angle$
 - Crucial **assumption**: rigid body $\widehat{P}_j \approx M_j \widehat{P}_T / M_T$

C.o.m. and internal dynamics are *decoupled*

SDE (as well as master equation) as for the 1-particle system

$$\hat{\mathbb{L}}^{(\mathrm{CM})}(\mathbf{y}) = \frac{m}{(2\pi\hbar)^3} \int \mathrm{d}\mathbf{Q} \mathcal{F}_r(\mathbf{Q}) \boldsymbol{\Phi}^{\frac{i}{\hbar}\mathbf{Q}\cdot(\hat{\mathbf{x}}_{\mathrm{CM}}-\mathbf{y})} \exp\left(-\frac{r_C^2}{2\hbar^2} \left| (1+k)\mathbf{Q} + 2k\hat{\mathbf{P}}_{\mathrm{CM}}/N \right|^2\right)$$
$$\mathcal{F}_r(\mathbf{Q}) = \sum_j \exp\left(\frac{i}{\hbar}\sum_{j'} \Lambda_{jj'}\mathbf{Q}\cdot\mathbf{r}_{j'}\right) \text{ Determines the specific features of localization in the CSL model}$$

Localization vs dissipation

Stochastic average of the position variance

Finite asymptotic value of position and momentum variance

Spherical rigid body of radius $R \gg r_C$ Localization rate $\frac{\Gamma}{\chi} \approx 10^4 N^2 \left(\frac{R}{r_C}\right)^2$ Dissipation rate

Possible experimental effects

Cosmological data: bounds to collapse parameters due to secular energy increase have to be reconsidered

- Interferometric experiments: stable against dissipative (long-time) corrections
 - Dissipation could play a relevant role in:

Conclusions and outlooks

- We have extended the GRW and CSL models by means of position and momentum dependent localization operators, which induce energy relaxation to a finite asymptotic value
- Introduction of a **new parameter**, related to the temperature T of the noise. Effective models also at $T \approx 1 K$
- Realistic unified framework for micro and macro systems: energy conservation principle, non-Markovianity,...
- Main goal: development of a first-principle underlying theory, fixing the features of the collapse noise

Acknowledgments

Angelo Bassi

University of Trieste

Markus Arndt

University of Vienna

Fundamental Problems in Quantum Physics (Action MP 1006) Testing quantum superposition in a mass range so far unexplored

Nino Zanghì

Università di Genova

The average energy of the system diverges linearly in time, with a rate $\xi = \frac{\hbar^2 \lambda}{4Mr_c^2} ~\approx 10^{-25} eV \, s^{-1}$