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Abstract
Quantum philosophy, a peculiar twentieth
century malady, is responsible for most of
the conceptual muddle plaguing the
foundations of quantum physics.

When this philosophy is eschewed, one
naturally arrives at Bohmian mechanics,
which is what emerges from Schrödinger’s
equation for a nonrelativistic system of
particles when we merely insist that
“particles” means particles.



The Title
Quantum Physics



In this chapter, we shall tackle immediately
the mysterious behavior in its most strange
form. We choose to examine a phenomenon
which is impossible, absolutely impossible,
to explain in any classical way, and which
has in it the heart of quantum mechanics.
In reality, it contains the only mystery. We
cannot explain the mystery in the sense of
“explaining” how it works. We will tell you
how it works. In telling you how it works
we will have told you about the basic
peculiarities of all quantum mechanics.
(Richard Feynman)



Quantum Philosophy

Quantum theory shows us where classical
logic goes awry.... It requires radically new
ways of thinking. (W. Thirring)

It is clear that this result can in no way be
reconciled with the idea that electrons
move in paths.... In quantum mechanics
there is no such concept as the path of a
particle. (Landau and Lifshitz)



. . . the idea of an objective real world whose
smallest parts exist objectively in the same
sense as stones or trees exist,
independently of whether or not we observe
them. . . is impossible. . . (W. Heisenberg)



How it works
• Prob(Z ∈ ∆|ψ) = 〈ψ, PA(∆)ψ〉
A s.a. operator [ |〈ψ|α〉|2 ]

• ψ0 → ψt unitary evolution
when no measurements are
performed

• ψ → ψα collapse after
measurement with result
Z = Zα



What is ψ?
The mathematics is easy

ψ : R× R3N → C (or CkN)

better

ψ : R× R3 × · · · × R3︸ ︷︷ ︸
Ntimes

→ C (or CkN)

The physics is not easy (nonlocality)

“what is ψ” → “what is the role of ψ”

[C. S. Peirce]



OQT
ψ has a role in the behavior of macroscopic
objects (“measurement instruments”)
during “quantum measurements”.

Complete state description

(Z, ψ)

ψ = ψ(q1, . . . ,qN
), Z: macroscopic variable



LB
The local beables are
the mathematical counterparts in the
theory to real events at definite places and
times in the real world (as distinct from the
many purely mathematical constructions
that occur in the working out of physical
theories, as distinct from things which may
be real but not localized, and as distinct
from the ’observables’ of other formulations
of quantum mechanics, for which we have
no use here.) J.S. Bell]

the macro variables Z of OQM are LB



BM
Complete state description (Q,ψ)

ψ as above, Q: microscopic variable, e.g.,

Q = (Q1, . . . ,QN
)

Q
i
positions of particles (LB)

BM is fundamentally about microscopic
LB (particles, or fields or strings ...), what
we call PO (primitive ontology). The role of
ψ is to govern the motion of the PO.



The equations of motion

dQk

dt
= ~
mk

Im
ψ∗∇kψ

ψ∗ψ
(Q1 . . . ,QN

)

i~
∂ψ

∂t
= Hψ

[
H = −

N∑
k=1

~2

2mk
∇2
k + V

]

[
SE ⇒ ∂|ψ(q)|2

∂t
= −div

(
Im

ψ∗∇kψ

ψ∗ψ
(q)|ψ(q)|2

) ]



Roads to BM
• de Broglie relation p = ~k connects a

particle property, the momentum p = mv,
with a wave property, the wave vector k:

v = ~k/m

But the wave vector k is defined only for
a plane wave.

For a general wave ψ, the obvious
generalization of k is the local wave
vector ∇S(q)/~, where S is the phase of
the wf.



• Modified Hamilton-Jacobi, ψ = Re
i
~S, with

R and S real. v = ∇S/m

• The quantum continuity equation, for
quantum probability density ρ and a
quantum probability current J: vψ = J/ρ.

• Symmetry. Invariance of the law under
rotations, translations, time-reversal,
and Galilean boosts.

• Wigner distribution:

vψ(q) =
∫

p

m
W ψ(q, p) dp



• Heisenberg representation:

v(q, t) = −1
~

Im〈ψ|Q̂(dq, t)[H, Q̂i(t)]|ψ〉
〈ψ|Q̂(dq, t)|ψ〉

(q = Q(t)) ,

Q̂(dq, t) PVM of
(
Q̂1(t), . . . , Q̂N(t)

)
• . . .



Implications of BM
1. the wf of a (sub-)system

2. quantum randomness

3. operators as observables

4. absolute uncertainty

5. collapse of the wave packet

6. formal scattering

7. familiar (macroscopic) reality



A final protest
When the cogency of Bohm’s reasoning is
admitted, a final protest is often this: it is
all nonrelativistic. This is to ignore that
Bohm himself, in an appendix to one of the
1952 papers, already applied his scheme to
the electromagnetic field. And application
to scalar fields is straightforward. However
until recently, to my knowledge, no
extension covering Fermi fields had been
made. Such an extension will be sketched
here. (J.S. Bell, “Beables for quantum field
theory”)



BTQFT
QFT Schrödinger’s equation

i
dΨ

dt
= −iHΨ (H ≥ 0)

n = n(r), (r ∈ 3D lattice) fermion number

define
dtTmn

trans. prob. m→ n in time dt

Tnm = Jnm/Dmm



Jnm =
∑
qp

2Re〈Ψ |nq〉〈nq|(−iH)|mp〉〈mp|Ψ〉

Dm =
∑
q

|〈mq|Ψ〉|2

if Jnm > 0. Otherwise Tnm = 0

stochastic process for fermionic number

dPn
dt

=
∑
m

(TnmPn − TmnPn)



From Schrödinger’s equation

dDn

dt
=
∑
m

(TnmDn − TmnDn)

so, if at some initial time

Pn(0) = Dn(0)
then for all times t

Pn(t) = Dn(t)

[
∂|ψ(q)|2

∂t
= −div

(
Im

ψ∗∇kψ

ψ∗ψ
(q)|ψ(q)|2

) ]



WF of a Subsystem
In a Bohmian universe with wf Ψ = Ψ (x, y),
what is meant by the wf ψ = ψ(x) of a
subsystem of that universe?

X = Qsys Y = Qenv

ψ(x) = Ψ (x, Y )



The evolution law for ψ

ψt(x) = Ψt(x, Yt)

need not be Bohmian. Yet

dX

dt
= ~ Im

ψ∗∇xψ

ψ∗ψ

(masses absorbed in the gradient)



CPF
PΨ(X ∈ dx |Y ) = |ψ(x)|2dx

X = Qsys Y = Qenv

Quantum Randomness and Absolute
Uncertainty

(No external time (gravity): open problem, work in
progress with Florian Hoffmann)



Q R

1
N

N∑
k

δ(q−Qk) ≈ |ψ(q)|2

PΨ (exceptions| preparation)

small for N large



OAO

macroscopic variable

Z = F (Q)

Prob(Z ∈ ∆|ψ) = 〈ψ, PA(∆)ψ〉
A s.a. operator



More on 2-slit

Weak Measurement of the Bohmian Trajectories

Experimental Bohmian trajectories:
Photons in a double slit set-up

From: S. Kocis, et al., Science, 332 (2011).

Theoretical Bohmian trajectories

From: C. Philippidis, et al., Il nuovo cimento B (1979)

Measured trajectories are comparable to the ones predicted by Bohmian
mechanics!!!

⇓
Is it possible to envisage an analogous experiment for electrons?

Damiano Marian 06-03-2015 24 / 29



Weak Measurement of the Bohmian Trajectories

v(x) =
1

m
Re

�x |p̂|ψ�
�x |ψ�

Sw where Ly , Lz � Lx

→ �Iw � ∝ �px�
WM of total current = WM of
momentum

Ss where L�
y , L�

z � Lx

→ �Is� ∝ |�rs |ψ�|2

Post-selection with position
measurement

Damiano Marian 06-03-2015 25 / 29

Xavier Oriols,
Damiano Marian,
NZ



QTWO
• There is a clear primitive ontology X , and it

describes matter in space and time.

• There is a state vector Ψ in Hilbert space that
evolves either unitarily or, at least, for
microscopic systems very probably for a long
time approximately unitarily.

• The state vector Ψ governs the behavior of X by
means of (possibly stochastic) laws.

• The laws are such that for typical histories of X ,
the probability distribution of the variables
representing X at time t is, in a suitable sense,
(approximately) |Ψ t|2.
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