Beta decay as an absolute calibration probe for spin-isospin responses

H. Sakai
RIKEN Nishina Center
Today's concern

- GT strength and Spin dipole (SD) strength by charge-exchange reaction

- Extract B(GT) and B(SD)

- For that, needs calibration on reaction probe by β decay data.
β-decay & Nuclear Reaction

- β-decay transition rate = \[\frac{1}{t_{1/2}} = f \frac{\lambda^2}{D} B(J^\pi) \]

 \[B(J^\pi) : \text{reduced transition strength } \propto |M|^2 \]

 ☹ Provide absolute value
 △ Q_\beta window

- Charge-exchange reaction cross-section
 = \[K(E, A) \times B(J^\pi) \]

 △ Needs calibration
 ☺ No Q_\beta window

Reaction cross section can be calibrated by \[B(J^\pi) \] of β decay.
90Zr$(p, n)^{90}$Nb at 295 MeV

90Zr$(n, p)^{90}$Y at 293 MeV

Apply the multipole decomposition analysis (MDA) analysis → $\Delta L=0$ and $\Delta L=1$ spectra

Wakasa, Sakai, PRC55(1997)2909

Yako, Sakai, PLB615(2005)193
Gamow-Teller (Op: $t_{+/−}\sigma$) strength $B(GT)$

Model independent spin sum rule (Ikeda sum rule)

\[
S_{β−} − S_{β+} = \frac{1}{2J_i + 1} \sum_f \left| \sum_{i=1}^{A} t_{−}(i)\sigma_i \right|^2 - \frac{1}{2J_i + 1} \sum_f \left| \sum_{i=1}^{A} t_{+}(i)\sigma_i \right|^2
\]

\[
= \sum B(GT−) - \sum B(GT+)
= 3(N - Z)
\]

If nucleus can be described in terms of nucleon degrees of freedom
Decomposed results

\[\frac{d^2 \sigma_{\text{cm}}}{d\Omega d\omega} (\text{mbsr}^{-1}\text{MeV}^{-1}) \]

$^90\text{Zr}(p,n)^{90}\text{Nb}$ at 295 MeV

0°

4.6°

9.8°

$^90\text{Zr}(n,p)^{90}\text{Y}$ at 293 MeV

$0^\circ-1^\circ$

$4^\circ-5^\circ$

$9^\circ-10^\circ$

\[\left(\frac{d\sigma(0^\circ)}{d\Omega} \right)_{\Delta L=0} \Rightarrow B(GT) \]
Proportionality assumption to extract $B(GT)$

\[\frac{d\sigma(0^\circ)}{d\Omega} \bigg|_{\Delta L=0} = \hat{\sigma}_{GT}(E_p, A) \cdot F_{GT}(q, \omega) \cdot B(GT) \]

Unit cross section

\[\hat{\sigma}_{GT}(^{90}\text{Zr}) = 3.6 \pm 0.2 \text{ (mb/sr)} \]

M. Sasano et al., PRC 79, 23602 ('09)

DWIA

$B(GT)$

\[S_{\beta^-} - S_{\beta^+} = 27.6 \]

For $0 \leq \omega \leq 50$ MeV
Quenching factor \(^{90}\text{Zr}\)

\[
Q = 0.92 \pm 0.07
\]

Wakasa et al., PRC 55, 2909 (1997)

Strength spread into 2p2h coupled states
Small \(\Delta h^{-1}\) contribution

Quenching problem solved!

However . . .

208Pb(p,n) at 300 MeV

\[
Q \sim 72 \%
\]

Wakasa et al., PRC 85, 064606 (2012)
Spin Dipole strength $B(GT)$

$$\hat{O}_{SD\pm} = \sum_{im\mu} t^i_\pm \sigma^i_m r_i Y^\mu_1 (\hat{r}_i)$$

Model independent spin sum rule

$$S_-(SD) - S_+(SD) = \frac{9}{4\pi} \left(N \langle r^2 \rangle_n - Z \langle r^2 \rangle_p \right)$$

$$\delta_{np} = \sqrt{\langle r^2 \rangle_n} - \sqrt{\langle r^2 \rangle_p}$$
Spin dipole strength

\[\frac{d^2\sigma_{\text{em}}}{d\Omega d\omega} \text{(mbsr}^{-1}\text{MeV}^{-1}) \]

\[^{90}\text{Zr}(p,n)^{90}\text{Nb} \text{ at 295 MeV} \]

\[^{90}\text{Zr}(n,p)^{90}\text{Y} \text{ at 293 MeV} \]

\[\Delta L = 0 \quad \Delta L = 1 \quad \Delta L = 2 \quad \Delta L = 3 \]
Proportionality relation (assumption !)

\[\sigma_{\Delta L=1,\pm}(q, \omega) = \hat{\sigma}_{SD\pm}(q, \omega) \cdot B(\text{SD}\pm) \]

Characterized by \(\Delta S=1, \Delta L=1, \Delta J=0,1,2 \)
- \(0+ \to 0- \) first forbidden
- \(0+ \to 1- \) first forbidden
- \(0+ \to 2- \) unique first forbidden

Unit cross section \(\hat{\sigma}_{SD\pm}(q, \omega) \)

⇒ Estimated with DWIA calculation at 4.5°

\[\sigma_{\Delta L=1,\pm}(4.5^\circ, \omega) = \hat{\sigma}_{SD\pm}(4.5^\circ, \omega) \cdot B(\text{SD}\pm) \]
Spin dipole strength and sum rule value

\[S_- - S_+ = 148 \pm 13 \text{ fm}^2 \]

\[\sqrt{\langle r^2 \rangle_p} = 4.19 \text{ fm} \]

\[\sqrt{\langle r^2 \rangle_n} = 4.26 \pm 0.04 \text{ fm} \]

\[\delta_{np} = 0.07 \pm 0.04 \text{ fm} \]
Spin dipole strength in 208Pb by Wakasa (Kyushu U)

Wakasa et al., 85(2012)064606

Excellent experiment!

SD decomposed!
Spin dipole strength in 208Pb by Wakasa (Kyushu U)

Wakasa et al., 85(2012)064606

GT quenched by 30%!

$\hat{\sigma}(\text{GT})$ and $\hat{\sigma}(\text{SD})$ not calibrated

Estimated by DWIA calculation

0- and 2- quenched by 30%!
Rely on proportional relation
\[
\frac{d\sigma(\theta)}{d\Omega} = \hat{\sigma}_{GT}(E_p, A) \cdot F_{GT}(q, \omega) \cdot B(GT)
\]
\[
\frac{d\sigma(\theta)}{d\Omega} = \hat{\sigma}_{SD}(E_p, A) \cdot F_{SD}(q, \omega) \cdot B(SD)
\]

Unit cross section should be calibrated using known B(GT/SD) by β decay!

Calibration is NOT available
- \(\hat{\sigma}_{GT}\) for \(A > 130\)
- \(\hat{\sigma}_{SD}\) for \(A > 1\) (nothing)

Why no calibration?
- No good candidate with stable target
\(\beta \)-decay matrix elements for GT state

- **GT moment**

\[
\mathcal{M}(j_A, \kappa = 0, \lambda = 1, \mu) = \frac{g_A}{(4\pi)^{1/2}} \sum_k t_{-}(k)\sigma_\mu(k) \\
(3D-42)
\]

- Operator is similar to reaction probe
- need unit \(\sigma(\text{GT}) \) for \(A \sim 200 \)
Feasibility of σ(GT) calibration for $A>160$

- Possible case? 190W(p,n)
 - $\log ft = 5.12 \Rightarrow B(GT)=0.03$
 - Isolated: ?
 - Why No F-trans. to 162 keV?
 - Isomer involvement?
 - Unstable beam exp.

 Cf. Sasano

118Sn, 120Sn: $B(GT)=0.34$

Too small!

- Possible case? 214Pb(p,n)
 - $\log ft = 4.44 \Rightarrow B(GT)=0.14$
 - \Rightarrow effective $B(GT)\sim0.07$
 - Isolated: many states around
 - Isomer involvement?
 - Unstable beam exp.

Still too small!

Need isolated GT decay with $B(GT)>0.5$ for $A\sim200$.
β-decay matrix elements of SD states

- **SD moment**

\[
\mathcal{M}(\rho, \lambda = 0) = (4\pi)^{-1/2}\frac{g_A}{c} \sum_k t_-(k)(\sigma(k) \cdot \nu_k) \\
\mathcal{M}(j_A, \kappa = 1, \lambda = 0) = g_A \sum_k t_-(k)r_k(Y_1(\hat{f}_k)\sigma(k))_0 \\
\mathcal{M}(\rho\nu, \lambda = 1, \mu = 0) = g_\nu \sum_k t_-(k)r_k Y_{1\mu}(\hat{f}_k) \\
\mathcal{M}(j\nu, \kappa = 0, \lambda = 1, \mu) = (4\pi)^{-1/2}\frac{g_\nu}{c} \sum_k t_-(k)(\nu_k)_{1\mu} \\
\mathcal{M}(j_A, \kappa = 1, \lambda = 1, \mu) = g_A \sum_k t_-(k)r_k(Y_1(\hat{f}_k)\sigma(k))_{1\mu} \\
\mathcal{M}(j_A, \kappa = 1, \lambda = 2, \mu) = g_A \sum_k t_-(k)r_k(Y_1(\hat{f}_k)\sigma(k))_{2\mu} \\
\mathcal{M}(\lambda_\pi = 0) = 0 \\
\mathcal{M}(\lambda_\pi = 1) \\
\mathcal{M}(\lambda_\pi = 2)
\]

Operators are NOT necessarily similar to reaction probe operator \(t_{\pm} \sigma r Y_1 \)

Bohr-Mottelson

Unique FF!
Calibration of 2- SD at A=90

\[\mathcal{M}(j_A, \kappa = 1, \lambda = 2, \mu) = g_A \sum_k t_-(k)r_k(Y_1(f_k)\sigma(k))_{2\mu} \]

\[
\begin{align*}
0+ & \quad 0.0 \\
^90\text{Sr} & \quad \text{(p,n)}
\end{align*}
\]

\[
\begin{align*}
L=1 & \quad 0.0 \\
L=3 & \quad 0.203 \\
L=6 & \quad 0.682
\end{align*}
\]

\[
\begin{align*}
\log ft = 9.40 & \quad \text{(n,p)}
\end{align*}
\]

\[
\begin{align*}
L=1 & \quad 0.0 \\
L=3 & \quad 0.203 \\
L=6 & \quad 0.682
\end{align*}
\]

I realized we have measured!
Extraction of unit cross section for 2-\(^{90}\text{Y} \) (n,p) 0+\(^{90}\text{Zr} \)

\[\log_{10} ft = 9.228 \]

\[B(\text{SD2-}) \uparrow = 5 \frac{9}{4\pi} \frac{D}{ft} \left(\frac{g_v}{g_A} \right)^2 C^2 \]

\(D = 6143 \text{ s}, \quad C = 386 \text{ fm} \)

\(\Rightarrow B(\text{SD2-}) \uparrow = 0.74 \text{ fm}^2 \)

\[\sigma(\text{exp}) = \hat{\sigma}(\text{SD2-}) \cdot B(\text{SD2-}) \]

\[0.25 \left(\frac{\text{mb}}{\text{sr}} \right) = \hat{\sigma}(\text{SD2-}) \cdot 0.74 \text{ fm}^2 \]

\(\Rightarrow \hat{\sigma}(\text{SD2-}) = 0.34 \left(\frac{\text{mb/sr}}{\text{fm}^2} \right) \)

DWIA estimation by Yako

\[\hat{\sigma}(\text{SD2-}) = 0.29 \left(\frac{\text{mb/sr}}{\text{fm}^2} \right) \]

No peak!
Most favorable case unit-$\sigma_{SD}(2^-)$

3- 0.11 (258 s) Isomer
0- 0.0 (158 s)

$log ft=7.19$ fastest!

$^90\text{Rb} \quad log ft=7.35 \quad 0^- \rightarrow 0^+$

$2^+ \quad 0.832$

$0^+ \quad 0.0 \ (29 \text{ y})$

$log ft=9.40$

Possible case? $^90\text{Rb}(p,n)$
- $log ft = 7.19 \Rightarrow B(\text{SD}2^-)=26 \text{ fm}^2$
- Moderately isolated
- Unstable beam exp.
- Isomer involvement: Yes

$\sigma(\text{exp}) = \hat{\sigma}(\text{SD}2^-) \times B(\text{SD}2^-) = 0.34 \times 26 = 8.8 \left(\frac{\text{mb}}{\text{sr}} \right)$
Calibration of 0^- and 1^- SD

Not necessarily similar to reaction probe $t_\sigma r Y_1$

- 0^-
 \[
 \mathcal{M}(\rho_A, \lambda = 0) = \left(4\pi\right)^{-1/2} \frac{g_A}{c} \sum_k t_-(k)(\sigma(k) \cdot v_k)
 \]

- 1^-
 \[
 \mathcal{M}(j_A, \kappa = 1, \lambda = 0) = g_A \sum_k t_-(k)r_k(Y_1(\hat{r}_k)\sigma(k))_0
 \]

- Two terms tend to cancel.

- Involves non-spinflip.

Probably $B(0^-/1^-)$ of β decay is unable to use as a probe calibration purpose.
Candidate of 0^- SD calibration

- Possible case? \(^{96}\text{Y}(p,n)\)
 - \(\log ft = 5.59 \Rightarrow B(\text{SD}0^-) = 1.125\text{ fm}^2\!\) !
 - Isolated
 - Unstable beam exp.
 - Isomer involvement: Yes

\[
\begin{array}{c}
0^- 0.0 (5.34 \text{ s}) \quad 96\text{Y} \\
\text{Isomer} \\
2^+ 1.581 \\
0^- \rightarrow 0^+ \\
96\text{Zr}
\end{array}
\]

\[
8^+ 1.14 (9.65 \text{ s}) \quad 96\text{Y}
\]

\[
\log ft = 5.59
\]

\[
0^- \rightarrow 0^+
\]

\[
\sim 2\text{ enhancement due to MEC}
\]

- Assume: \(B(\text{SD}0^-; \text{SF}) = 0.1 \times B(\text{SD}0^-)\)

\[
\sigma(\text{exp}) = \sigma(\text{SD}2^-) \times B(\text{SD}0^-; \text{SF}) \approx 10 \text{ (mb/sr)}
\]

- Feasible with RI beam exp.
- Proportionality ???
Difficulties of 1^- SD calibration

- Shell model estimate of 1^- SD

β decays of isotones with neutron magic number of $N = 126$ and r-process nucleosynthesis

Toshio Suzuki,1,2,3 Takashi Yoshida,4 Toshitaka Kajino,3,4 and Takaharu Otsuka5,6

\[
B(SD\lambda) = \frac{1}{2J_i + 1} |\langle f || r[Y^{(1)} \times \tilde{\sigma}]^\lambda t_- || i \rangle|^2
\]

\[
O(1^-) = \left[g_V \frac{\tilde{p}}{M_N} \Xi (g_A \tilde{\sigma} \times \tilde{r} - ig_V \tilde{r}) \right] t_- ,
\]

- Strong non-spinflip strength
- $\log ft$ is large
- Small branching ratio

⇒ Probably non-realistic to use $\beta B(1^-)$ for calibration
Summary

1. GT and SD: important spin-isospin responses
 - (p,n) reaction could provide B(GT) and B(SD)

2. (p,n) reaction must be calibrated by β B(GT/SD)
 - No B(GT) for $A>160$
 - Nothing for B(SD)

3. RI beam is now available \Rightarrow open new possibilities

4. GT:
 - $B(GT) > 0.5$ is needed for $A>160$

5. SD: with 0- or 1-
 - $B(2-): ^{90}$Rb(p,n) may be feasible with log $ft=7.19$
 - $B(1-):$ Maybe essential difficulty with non-spinflip
 - $B(0-):$ 96Y(p,n) may be with log $ft=5.59$ but γ_5 term?

6. SPES project
 - $B(GT)/B(SD)$ are always precious for structure study
 - β decay measurement?