

F. CONVENTI

Attivita' Higgs

G. Carlino, F. Cirotto, F. Conventi, L. Merola, L. Paolillo, E. Rossi, A. Sanchez. G. Zurzolo

A. Giannini, C. Calamita e M. D'Errico (tesi triennali fine 2014-inizio 2015)

<u>Attivita' Run-I:</u>

- $H \rightarrow ZZ \rightarrow 4l$ (analisi spin-CP MELA, fixed hypo, HSG2)
 - Analisi e' stata approvata scorsa settimana, nota pronta (https://cds.cern.ch/ record/1648266)
 - Articolo in preparazione (https://cds.cern.ch/record/1974141)
- $H \rightarrow ZZ \rightarrow qqll$ (high mass, 2HDM, HSG2)
 - Analisi approvata
 - Nota pronta (<u>https://cds.cern.ch/record/1693159</u>)
- Combinazione dei risultati analisi spin-CP (HSG7)
 - To be ready for Moriond 2015
- Prospettive per il Run-II LHC

09/01/14

09/01/14

SM Higgs couplings

- I couplings per lo SM Higgs sono di 2 tipi:
 - "Gauge" couplings (to bosons)
 - Yukawa couplings (to fermions)

E' possibile studiare possibili deviazioni dalle previsioni dello SM utilizzando le diverse modalità di decadimento:

μ(VBF+VH) / μ(ggF+ttH)

SM Higgs couplings

- I couplings per lo SM Higgs sono di 2 tipi:
 - "Gauge" couplings (to bosons)
 - Yukawa couplings (to fermions)

E' possibile studiare possibili deviazioni dalle previsioni dello SM utilizzando le diverse modalità di decadimento:

μ(VBF+VH) / μ(ggF+ttH)

09/02/13

Analisi: In&Out 2014

Analisi Higgs

• $H \rightarrow ZZ \rightarrow 4l \text{ spin-CP}$

test d'ipotesi, MEGA fit: Francesco C., Elvira, Francesco Cirotto, Arturo

- <u>Elvira co-editor nota 4leptoni spin-CP</u>
- 2HDM (BSM) and SM $H \rightarrow ZZ \rightarrow qqll$
- Francesco C., Arturo S., Giovanni Z., Lorena P.

$H \rightarrow ZZ \rightarrow 4l$

Modifiche rilevanti per spin-CP nella selezione $H \rightarrow ZZ \rightarrow 4l$:

- Electron likelihood-ID (reduces by 50% Z+jets background)
- Cluster-track combination to improve electron resolution at low pT
- L'analisi di fixed Hypothesis e' stata approvata
- L'analisi della struttura tensoriale HZZ e' "unblinded"

<u>1 articolo in preparazione</u>

• Spin-CP (Elvira co-editor)

<u>4 articoli pubblicati</u>

- Massa (combined con gamma-gamma)
- Couplings
- Fiducial and differential x-section
- High mass searches

arXiv:1001.3396v2

H→ZZ→4l: Spin-CP analysis introduction

$H \rightarrow ZZ(*) \rightarrow 4l$ is an ideal channel for spin-CP studies:

- Complete reconstruction of the event topology and high S/B ratio
- Several observables depending on spin-CP available

Event selection:

- Standard cut-based selection of the mass analysis
- $\circ~$ Signal produced at 125.5 GeV
- Four categories final states 4mu, 2e2mu, 2mu2e, 4e
- $\circ~$ signal region: 115 GeV < m4l < 130 GeV

For fixed spin-CP hypothesis separation, we studied the following hypotheses:

- Spin-o, generated using Powheg +JHU: Standard Model (o⁺), pseudo-scalar (o⁻), scalar with higher-dimension operators (o⁺_h)
- \circ Spin-2, generated using Madgraph5: graviton-like tensor with minimal couplings (2+m) and samples with non universal couplings

For Measurement of the HZZ tensor structure

- Analyses allows coupling constants to vary; mixing pure states
- Parametrize fits in coupling ratios:g2/g1 and g4/g1
- Possible to translate to cross section fractions fgi

H→ZZ→4l: Spin–Parity Observables (1)

Sensitive variables

- ♦ Intermediate boson masses: m₁₂, m₃₄
- ♦ production angles: Z₁production angle θ* and decay plane angle (Φ₁)
- Helicity angles: angle between the Z₁ and Z₂ decay planes (Φ) and decay angles of negative leptons (θ₁,θ₂)

Hypothesis test 7 + 8 TeV: o⁺ / o⁻

Unico canale in grado di studiare il caso di spin o-

H→ZZ→4l: Spin–Parity Observables (2)

 $g_4/g_1 = -4$

COSA.

ATI AS Interna

Sensitive variables

Events / (0.166667

0.12

0.1

0.08

0.06

0.04

0.02

♦ Intermediate boson masses: m₁₂, m₃₄

SM

- ♦ production angles: Z₁production angle θ* and decay plane angle (Φ₁)
- Helicity angles: angle between the Z₁ and Z₂ decay planes (Φ) and decay angles of negative leptons (θ₁,θ₂)

 $\theta_2 e^{i}$

р

The parameters related to decays are sensitive to the Higgs parity admixture

-0.2

Production angles, (or p_{T-4I} , η_{4I}) and m_{4I} used to reject backgrounds

Z'

 Φ_1

 Z_1

H→ZZ→4l :Fixed Hypothesis Analyses overview

- * MELA approach (Napoli and RomeI):
 - Signal to ZZ background discrimination: use of a Boosted Decision Tree (BDT_{ZZ}) discriminant has been optimized to separate signal/background (trained on η_{4l} , pt_{4l}, KD \rightarrow the same used for the Mass analysis) and used to define 8 categories
 - J^P-MELA Discriminant based on full theoretical calculation of the Matrix Element is used to separate different spin/parity states

* BDT approach:

- \circ Signal to ZZ background discrimination: use of a Boosted Decision Tree discriminant (BDT_{ZZ}) has been optimized to separate signal/background trained on $m_{4l},\eta_{4l},pt_{4l},KD$
- A spin-CP BDT (BDT_{JP}) trained for each spin-parity hypothesis pair using fully simulated signal MC to separate different spin/parity states

$H \rightarrow ZZ \rightarrow 4l$ spin-CP: List of systematics uncertainties for fixed spin hypothesis analyses

Common systematic uncertaities (same as in the Mass analysis):

- \diamond Normalization systematics
 - ♦ Luminosity uncertainty
 - \diamond ZZ and Higgs Signal QCD scale PDF+ α_s uncertainties
 - ♦ Branching ratio $H \rightarrow ZZ$ uncertainties
- Shape systematics (Normalization uncertainties negligible)
 Electron & photon energy scale and resolution uncertainties
 Muon momentum scale and resolution uncertainties

\diamond Normalization and Shape systematics

- Uncertainty of Higgs mass in MC modeling: we shift the 4 leptons mass (m4l_constrained) by +/-0.5 GeV to estimate the shape variations and we use a $\sim 5\%$ to take into account the yields normalization changes
- ♦ Trigger efficiency
- Muon/electron reco & ID efficiencies
- ♦ Electron reco & ID, and cut efficiencies
- ♦ Uncertainty on Reducible background

MELA specific systematics:

Shape systematic: uncertainty on the wrong-pair fraction (fWP): we estimate the error on the wrong-pair fraction comparing PowHeg and JHU samples and to be conservative we took the highest difference as variation (10%)

BDT specific systematics:

smoothing uncertainty to signal, ZZ bkg and reducible bkg shape (parameter variations nominal value =0.35, variation(0.3,0.4), using 3 nuisance parameters)

H→ZZ→4l spin-CP: Test d'ipotesi

17

- Primi risultati su Run-I (Phys. Lett. B 726 (2013), pp. 120-144)
- Risultati finali su Run-I → Analisi approvata ma risultati non ancora pubblici
- Articolo in stato avanzato di preparazione

Studio della struttura tensoriale del vertice H→ZZ

The goal of the analysis is to probe BSM contributions to HZZ tensor structure:

- Hypothesis tests indicate that pure CP-odd state is excluded
- Similarly the Standard Model is favoured over the pure O⁺_h state
- The observed resonance may however not be an eigenstate but rather a mix of pure states

Analysis Methods

Nine-dimensional Matrix Element Method (Napoli, RomeI and ANL & Chicago):

- Use analytical matrix element at parton level to describe all final state observables as function of coupling ratios
- Correct description for detector effects using morphed MC templates
- Angular distributions and masses are used directly as observables

Matrix Element Observable fit

- Use Optimal Observables to study tensor structure
- Matrix element re-weighting gives observable distributions with full detector simulation for points of g_2/g_1 and g_4/g_1
- Use pdf morphing to arrive at a continuous description

Studio della struttura tensoriale del vertice $H \rightarrow ZZ$

Model-independent approach to extract the resonance spin, parity and couplings
 Explore Higgs properties using decay Kinematics angular analysis of decay products

Scattering amplitude describing the interaction of generic Higgslike resonance of spin zero with the two Z bosons:

$A(X \rightarrow V_1 V_2) = v^{-1}$	$\left[g_{1}M_{V}^{2}\varepsilon_{1}^{*}\varepsilon_{2}^{*}+g_{2}f_{\nu\mu}^{*(1)}f^{*(2)\nu\mu}\right]$	$+ g_4 f_{\nu\mu}^{*(1)} \tilde{f}^{*(2)\nu\mu}$
	CP-EVEN	CP-ODD

$\mathbf{J}^{\mathbf{P}}$	Production	Decay configuration	
0+	gg→X	$g_1 = 1 g_2 = g_4 = 0$	Standard Model Higgs
$\mathbf{O^{+}_{h}}$	gg→X	$g_1 = 0 g_2 = 1 g_4 = 0$	Scalar with higher-dimension operators
0-	gg→X	$g_1 = g_2 = 0 g_4 = 1$	Pseudo-scalar

- + g_i's are effective coupling constants
- ✦ Related to spin-o models tested in the fixed hypothesis tests
- + Analyses allows coupling constants to vary; mixing pure states
- + Parametrize fits in coupling ratios: g2/g1 and g4/g1
- ✤ Possible to translate to cross section fractions fgi
- + Note: It was previously demonstrated that "g3" could be absorbed in g2

Nine-dimensional Matrix Element Method (Napoli, RomeI and ANL & Chicago)

20

• Shape model is directly based on nine observables:

 $\bar{x} = (m_{4l}, p_{T,4l}, \eta_{4l}, \cos \theta_*, \cos \theta_1, \cos \theta_2, \phi, m_{12}, m_{34})$

Signal: has four components that altogether describe the 9 observables

- m4l, $\cos(\theta^*) \rightarrow$ binned 1D templates from MC, smoothed by linearly interpolation between bin centres
- (pT,4l, η 4l) → binned 2D template from MC
- $(\cos(\theta_1), \cos(\theta_2), \Phi, m_{12}, m_{34}) \rightarrow \text{Analytical prediction from ME, corrected for detector acceptance, efficiency, resolution using 2- or 3-D templates from MC$
- Detector corrections for the 5D piece are re-derived for different values of g2/g1, g4/g1 before a probability model is build by linear morphing

• ZZ* and reducible backgrounds: each have 6 components to cover the 9 observables

- \circ m4l \rightarrow smooth Kernel Density Estimator
- (m12, m34), (pT,4l, η 4l), cos(θ *), (cos(θ 1), cos(θ 2)), $\Phi \rightarrow$ Binned MC templates

H→ZZ tensorial structure: Closure tests

Likelihood scans for different hypothesised data models

21

- Asimov data created in g2/g1 and g4/g1 steps of 2 over full range (-10, 10)
- Demonstrate that fits locate minima precisely
- Asimov samples are created from statistically Independent MC

Studio della struttura tensoriale del vertice $H \rightarrow ZZ$

- Primi risultati su g_2 e g_4 con i dati di Run-I (sensitivita' limitata) \rightarrow Analisi in fase di approvazione
- Prospettive per Run-II e oltre (gia' inlcuse nelle note ECFA di Ottobre 2013)

ATL-PHYS-PUB-2013-013

8D fit					
Luminosity	f_{g4}	f_{g_2}			
300 fb ⁻¹	0.2	0.29			
3000fb ⁻¹	0.06	0.12			

 $H \rightarrow ZZ \rightarrow qqll$

- Ricerca ad alta massa (200-1000 GeV)
- Risultati e limiti per SM Higgs, EWS Higgs-like resonance, BSM Higgs (2HDM)
- Analisi suddivisa per categorie:
 - ggF and VBF
 - 0,1,2 btag jets
- Merged jets category (for M_H>700 GeV)

25

The H \rightarrow ZZ \rightarrow llqq channel is one of the most important search channels for heavy resonances

fully reconstructable final state high cross section (~20 times higher than the 4l - but much more background) similar sensitivities for mH \gtrsim 300 GeV

Main backgrounds

- Z + jets: very similar signature, cross section ~10000 times higher (wrt/ SM Higgs)
- Top
- QCD: can be strongly reduced thanks to leptons
- diboson: is actually the only irreducible background but turns out to be less important than other backgrounds

$H \rightarrow ZZ \rightarrow qqll$ Boosted regime

26

- For m_H≥700 GeV the two Z's have a relevant boost, giving rise to more and more collimated final state objects
- Since jets have a finite size, they can overlap thus reducing the efficiency of the standard (resolved) selection
- We look for massive anti-kt R=0.4 jets in events failing the standard selection
 - 2 leptons + 1 jet
 - 2 leptons + \geq 2 jets, m_{jj} < 50 GeV or m_{jj} > 150 GeV

	Exp.	limit on σ	σ_{SM} -	no s	ysts.
--	------	-------------------	-----------------	------	-------

m	resolved only	resolved +merged	improvement (%)
700	0.390	0.389	0.3
800	0.520	0.508	2.3
900	0.837	0.736	12.1
1000	1.891	1.103	41.7

09/01/12

SM Higgs Results Run-I

27

Mass, spin, CP, and flavor

- mH ~125.5 ± 0.5 GeV
- looks like 0⁺ as in SM, though only marginally favored over some alternatives
- fraction of CP odd coupling in ZZ is < ~50%
- no FCNC seen, BR(t \rightarrow Hc) $\lesssim 1\%$

Production:

discovery established ggF production & now VBF production also firmly established

09/01/14

- evidence for VH $\sim 2\sigma$
- ttH: not yet, look out for Run-II

Decays:

- γγ, WW, ZZ >> 5σ
- $\tau\tau$ at ~4 σ (lack of $\mu\mu$ as expected \Rightarrow not a flavor-universal coupling)
- bb ~2σ
- BR(H→invisible/undetected) < ~60%
- total width < ~4.2x SM

Overall coupling pattern:

consistent with the SM, though ~2σ tension seen

09/01/14

		"Truth Monte Carlo"				
	Category	$ggF: gg \rightarrow H$	VBF: $qq \rightarrow qqH$	VH: $q\bar{q} \rightarrow VH$		
	$ggF: gg \rightarrow H$	0.73	0.14	0.34		
Ricostruiti	VBF: $qq \rightarrow qqH$	0.13	0.58	0.28		
	VH: $q\bar{q} \rightarrow VH$	0.14	0.28	0.39		

Planning for 2015 and beyond — publications

Evolving slides

BSM Higgs searches

	H/A→(b)ττ (LL,LH,HH)		H+ → τν+jets			mono H (≻γγ +MET)
Neutral Heavy Higgs to Fermions	H/A- ≻ (b)µµ		H+→tb (resolved)			mono H (→ bb+MET)
	H/A → (b)bb		H+-≻tb s-chan (had, L+j)			mono H (≻ 4I+MET)
	H/A-≻tt		H+ → _T ν+lep(s)		Exotics decays	H-≻γγydark
			H+≁µν		with MET, Dark-sector Inspired	ZH-≻(II)INV
	Н≁үү	Heavy and	H+-≻cs			VBF H→INV
	H → ZZ → 4I	light Chargeo	H+-≻cb			VH-≻(jj)INV
Neutral Heavy	H→ZZ→Ilvv	Higgs	- AW			ttH-≻INV (various
Higgs to Bosons	H→ZZ→Ilqq		H+-≻Wh (WH, WA)			ggF H-≻INV (monojet).
	H→ZZ→vvqq		H+-≻Wγ			
	H→WW→lvlv		H+-≻tb (boosted)			H-≻ZdarkZ(dark)-≻4I
	H→WW→I⊭qq		H+-≻WZ-≻tb (lvqq, qqll)			h- ≻ 2a-≻µµµµ
			H++			h-≻Za-≻llµµ
	(H →)hh →γγ bb				Exotics decays	a≁µµ
Neutral Heavy Higgs to Bosons, including light Higgs	(H- ≻)hh- ≻ 4b		H≁ <i>τ</i> µ, <i>τ</i> e		with no MET, Dark-sector / NMSSM Inspired	h-≻2a-≻4γ(multiphoton)
	(H→)hh→bbττ		H-≻eµ			h-≻2a-≻bbµµ
	(H→)hh→VVγγ→4jγγ,	LFV / FCNC	/ H-≻J/ψγ, Υγ			h+≻2a-≻bb≀r
	(H→)hh→WWγγ→lνqqγγ	rare decays	H-≻ZJ/ψ, ΖΎ			(bb)a→(bb)ττ→(bb)eµ
	A→Zh→IIℼ (LL,LH,HH)		Η-≻φγ			h-≻2a-≻4 <i>τ</i>
	A-≻Zh-≻(II/vv)bb		t-≻cH (various			H+-≻aW

BSM Higgs searches

Simplified models

All the topologies that we have identified can be achieved within "simplified models". Motivation: capture all the relevant phenomenology while keeping only minimal necessary ingredients.

SM + scalar (Higgs portal)

Common is: additional scalars or pseoduscalars which can couple to SM Higgs or can be produced at the LHC pp collisions.

2HDM (with and without an extra neutral scalar)

SUSY (MSSM, nMSSM), Hidden Valley, little Higgs, etc..

- A: bb, ττ, tt decays (no VV decays, hZ suppressed)
- H: Same as A since WW, ZZ & hh are suppressed
- For tan β >>1 only decays to b or τ
 - Br φ→bb ~90%, Br φ→τ τ ~10%
- For tan β ~1 can get H=WW,ZZ,hh; A-hZ;

Extend search for heavy SM Higgs for MSSM $pp \rightarrow H \rightarrow ZZ \quad pp \rightarrow H \rightarrow WW \quad pp \rightarrow H \rightarrow hh \quad pp \rightarrow A \rightarrow hZ$

New model independent approach proposed by Djouadi, Maiani, Polosa, Quevillon, Riquer A preliminary analysis of ATLAS+CMS

constraints at 7+8 TeV with 25 fb-1 data Can be vastly improved!

Strategie di Analisi Run-II

36

Analisi "veloce" con 2-5 fb⁻¹ (Moriond 2016)

- $A/H \rightarrow$ tau tau
- Dijet resonances (model independent)

Analisi 20 -100 fb⁻¹ (2015-2018)

- High mass BSM Higgs (ZZ o hh)
- A/H→ tau tau + analisi spin/CP
- Mono-Jet (Exotica and DarkMatter)