INSIDE Project

Innovative Solutions for In-beam DosimEtry in Hadrontherapy

Politecnico Bari and INFN Bari:

F. Ciciriello, F. Corsi, F. Licciulli, C. Marzocca, G. Matarrese

INFN (Milano, LNS, LNF):

G. Battistoni (Milano), M. Cecchetti (Milano), G. A. P. Cirrone (LNS), G. Cuttone (LNS), E. De Lucia (LNF), S. Muraro, F. Romano (LNS), P. Sala (Milano)

University of Roma La Sapienza and INFN Roma 1 : R. Faccini, M. Marafini, C. Morone, V. Patera, L. Piersanti, A. Sarti, A. Sciubba

University of Torino and INFN Torino:

P. Cerello, S. Coli, E. Fiorina, G. Giraudo, F. Pennazio, C. Peroni, A. Rivetti, R. Wheadon

University of Pisa and INFN Pisa:

N. Belcari, M. G. Bisogni, N. Camarlinghi, S. Ferretti, E. Kostara, A. Kraan, B. Liu, N. Marino, M. Morrocchi, M. A. Piliero, G. Pirrone, V. Rosso, G. Sportelli

APIFN7/

UNIVERSITÀ **DEGLI STUDI DI TORINO**

I N 🗕 N

li Fisica Nucleare

The INSIDE project

 It is under the national research program PRIN MIUR 2010-2011 - 2010P98A75

- It is part of the "Dose Monitoring for Hadrontherapy" working package of the RDH project
- It is a collaboration of:
 - Politecnico di Bari and INFN Bari
 - INFN (Milano, LNS, LNF)
 - University of Pisa and INFN Pisa
 - University of Roma La Sapienza and INFN Roma1
 - University of Torino and INFN Torino

The INSIDE monitoring system

Dose

Profiler

- The monitoring system developed by the INSIDE project will be based on a PET system and a Dose Profiler
- It will make use of both the β⁺ emitters created during the irradiation and the prompt radiation
- The monitoring system will be installed at the CNAO hadrontherapy facility

PET

heads

The Dose Profiler

(V. Patera, Roma)

- 6 XY planes with 2 cm spacing
- Each plane made of 2 stereo layers of 192 0.5x0.5 mm² square scintillating fibers
- 2x0.5 mm squared fibers read out by Hamamatsu 1mm² SiPM : S12571-050P
- ✤ 32 SiPM feed a 32 channels ASIC BASIC32

PET heads

- Two planar heads, each 10 cm (axially) x 25 cm (transaxially) with a gantry aperture of 55 cm
- 2 x 5 LFS scintillator matrices of 5 x 5 cm², with 16 x 16 pixels (3 x 3 x 20 mm³) of 3.2 mm picth
- 16 x 16 Multi-Pixel Photon Counters (MPPC) arrays from Hamamatsu
- 4 custom-design 64 channels TOF-PET ASIC

Front-end ASIC TOF PET

Parameter	Value
Number of channels	64
Clock frequency	80 – 160 MHz
Dynamic range of input charge	300 pC
SNR ($Q_{in} = 100 \text{ fC}$)	> 20-25 dB
Amplifier noise (in total jitter)	< 25 ps (FWHM)
TDC time binning	50 ps
Coarse gain	$G_0, G_0/2, G_0/4$
Max. channel hit rate	100 kHz
Max. output data rate	320 Mb/s (640 w/ DDR)
Channel masking	programmable
SiPM fine gain adjustment	500 mV (5 bits)
SiPM	up to 320pF term. cap., 2MHz DCR
Calibration BIST	internal gen. pulse, 6-bit prog. amplitude
Power	< 10 mW per channel

FE Board w 4 TOFPET ASICs **R. Wheadon INFN Torino**

Tofpet performances

MPPC discrete TSV 4x4 arrays (3 x 3 mm2 pixels)

Crystal 4x4 matrix on each array (3.5 x 3.5 x 15 mm3)

Crystal-SiPM matching 73 %

Courtesy of M. Rolo, LIP and ENDOTOFPET EU project

Test of the TOF PET ASICS

Each PET head needs 40 TOF PET chips

Each TOF PET chip must be tested

Test of the TOF PET ASICS: experimental set up

(A. Lodola, N. Marino, M. Morrocchi, M.A. Piliero, G. Pirrone, Pisa)

Tracks left by the probe card needles on the TOF PET pads

PET system: first experimental set up

- PMMA phantom: 5 x 5 x 7 cm³
- RGB SiPM from AdvanSid 3 x 3 mm²
- LYSO crystal 3 x 3 x 10 mm³
- TOFPET ASIC read out

- 4DMPET acquisition board
- Acquisition software developed in LabView code, at INFN sez. Torino

irradiation

radiation beam.

The number of events oscillates because of the movement of the beam spot.

PET system: second experimental set up Dopet

Dopet

SiPM + LFS

SiPM + LYSO

PMMA phantom: 5 x 5 x 7 cm³

TOFPET ASIC read out

4DMPET acquisition board

Acquisition software developed in LabView code, at INFN sez. Torino

- **Proton beam energy: 95 MeV**
- Pulsed beam: 10⁹ protons per spill, 1 s beam on (spill), 4 s beam off (interspill)
- 20 min continuous irradiation, about 330 spills

PET system: experimental results

The 511 keV peak can be easily reconstructed from the coincidence events in the interspill data

 The inspill data is more influenced by multiple coincidences because of the prompt radiation

• 10 kHz is the frequency of the protons extraction within the bunch (spill).

FLUKA MC code validation

- ◆ 2·10⁹ pps (protons), 300 s, ~ 60 spills
- 95 MeV protons, PMMA phantom
- 12 runs, 1·10⁸ primaries each
- Custom FLUKA routine to extract data
- Validation of the single-channel acquisition rate:
 - same trend in inter-spill (β +activity rising) and in-spill (prompt signal)
 - limitations due to irregular beam repetition (only in the case of test beams)

(F.Pennazio, Torino)

Conclusions

Very promising results from CNAO test beam of the PET system prototypes

The response of the detection and read-out system is stable during the irradiation

The PET system prototypes were capable of handling the event rates either inspill and interspill

The 511 keV peak was easily reconstructed from the interspill coincidence data

Good agreement between the MC and the experimental data

INSIDE PET detector: FE board + module

Electronic lab @ INFN Torino very low activity Na22 source 2 modules in coincidence no photopeak seen without coincidence

INSIDE PET detector: 2 modules E_coinc_2029

Any channel in module 1 vs. module 2

INSIDE PET detector: 2 modules

time resolution channel 1005051

Most populated channel pair in module 1 vs. module 2

Acknowledgments

Politecnico Bari and INFN Bari: F. Ciciriello, F. Corsi, F. Licciulli, C. Marzocca, G. Matarrese

INFN (Milano, LNS, LNF): G. Battistoni (Milano), M. Cecchetti (Milano), G. A. P. Cirrone (LNS), G. Cuttone (LNS), E. De Lucia (LNF), S. Muraro (Milano), F. Romano (LNS), P. Sala (Milano)

<u>University of Pisa and INFN Pisa</u>: N. Belcari, M. G. Bisogni, N. Camarlinghi, S. Ferretti, E. Kostara, A. Kraan, B. Liu, N. Marino, M. Morrocchi, M. A. Piliero, G. Pirrone, V. Rosso, G. Sportelli

University of Roma La Sapienza and INFN Roma 1 : R. Faccini, M. Marafini, C. Morone, V. Patera, L. Piersanti, A. Sarti, A. Sciubba

University of Torino and INFN Torino: P. Cerello, S. Coli, E. Fiorina, G. Giraudo, F. Pennazio, C. Peroni, A. Rivetti, R. Wheadon

ToT (energy meas) = t2 - t0

Rolo, M. D., et al. "TOFPET ASIC for PET applications." Journal of Instrumentation 8.02 (2013).