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Motivations.
3D imaging of nucleon’s partonic content but also…

Correlation of the longitudinal momentum and the
transverse position of a parton in the nucleon.
Insights on:

Spin structure,
Energy-momentum structure.

Probabilistic interpretation of Fourier transform of
GPD(x, ξ = 0, t) in transverse plane.

Transverse plane density (Goloskokov and Kroll model)
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Overview.
Development of a new GPD model in the Dyson-Schwinger and
Bethe-Salpeter framework.

Important topic for several past, existing and future
experiments: H1, ZEUS, HERMES, CLAS, CLAS12,
JLab Hall A, COMPASS, EIC, …
GPD modeling / parameterizing is an essential ingredient
for the interpretation of experimental data.
Recent applications of the Dyson-Schwinger and
Bethe-Salpeter framework to hadron structure studies.

1 GPDs: Theoretical Framework

2 GPDs in the Dyson-Schwinger and Bethe-Salpeter Approach

3 Results: Theoretical Constraints and Phenomenology

4 Extension: Implementing Positivity and Polynomiality
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Overview.
Development of a new GPD model in the Dyson-Schwinger and
Bethe-Salpeter framework.

Important topic for several past, existing and future
experiments: H1, ZEUS, HERMES, CLAS, CLAS12,
JLab Hall A, COMPASS, EIC, …
GPD modeling / parameterizing is an essential ingredient
for the interpretation of experimental data.
Recent applications of the Dyson-Schwinger and
Bethe-Salpeter framework to hadron structure studies.
Here develop pion GPD model for simplicity.
No planned experiment on pion GPDs but existing
proposal of DVCS on a virtual pion.

Amrath et al., Eur. Phys. J. C58, 179 (2008)

1 GPDs: Theoretical Framework

2 GPDs in the Dyson-Schwinger and Bethe-Salpeter Approach

3 Results: Theoretical Constraints and Phenomenology

4 Extension: Implementing Positivity and Polynomiality
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Overview.
Development of a new GPD model in the Dyson-Schwinger and
Bethe-Salpeter framework.

Important topic for several past, existing and future
experiments: H1, ZEUS, HERMES, CLAS, CLAS12,
JLab Hall A, COMPASS, EIC, …
GPD modeling / parameterizing is an essential ingredient
for the interpretation of experimental data.
Recent applications of the Dyson-Schwinger and
Bethe-Salpeter framework to hadron structure studies.

1 GPDs: Theoretical Framework

2 GPDs in the Dyson-Schwinger and Bethe-Salpeter Approach

3 Results: Theoretical Constraints and Phenomenology

4 Extension: Implementing Positivity and Polynomiality
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Pion Generalized Parton Distribution.
Definition and symmetry relations.

Hq
π(x, ξ, t) =

1

2

∫ dz−
2π

eixP+z−
⟨
π,P +

∆

2

∣∣∣∣ q̄
(
− z
2

)
γ+q

( z
2

) ∣∣∣∣π,P− ∆

2

⟩
z+=0
z⊥=0

with t = ∆2 and ξ = −∆+/(2P+).

⊥

z0

z3

n+n− References
Müller et al., Fortschr. Phys. 42, 101 (1994)

Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

From isospin symmetry, all the information about pion
GPD is encoded in Hu

π+ and Hd
π+ .

Further constraint from charge conjugation:
Hu
π+(x, ξ, t) = −Hd

π+(−x, ξ, t).
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Hq(x, 0, 0) = q(x)

Form factor sum rule
Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule∫ +1

−1
dx Hq(x, ξ, t) = Fq

1(t)

Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality∫ +1

−1
dx xnHq(x, ξ, t) = polynomial in ξ

Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality
Positivity

Hq(x, ξ, t) ≤
√

q
(

x + ξ

1 + ξ

)
q
(

x− ξ
1− ξ

)

Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.

Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.

Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].

Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Properties.
Generalization of form factors and Parton Distribution Functions.

PDF forward limit
Form factor sum rule
Polynomiality
Positivity
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

Hq(x, ξ = 1, t = 0) =
1

2
ϕq
π

(
1 + x
2

)

Numerous theoretical constraints on GPDs.
There is no known GPD parameterization relying only on
first principles.
Modeling becomes a key issue.
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Double Distributions.
Natural solution of the polynomiality problem.

A function satisfying a polynomiality property is the
Radon transform of another function.

Representation of GPD in terms of Double Distributions:

Hq(x, ξ, t) =
∫
Ω

dβdα δ(x− β − αξ)
(
Fq(β, α, t) + ξGq(β, α, t)

)
Müller et al., Fortschr. Phys. 42, 101 (1994)
Radyushkin, Phys. Rev. D59, 014030 (1999)

Radysuhkin, Phys. Lett. B449, 81 (1999)

Support property: x ∈ [−1,+1].

Discrete symmetries: Fq is α-even and Gq is α-odd.

H. Moutarde Light Cone 2015 7 / 25
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Double Distributions.
Identifying Double Distributions from GPD Mellin moments.

Define Double Distributions Fq and Gq as matrix elements
of twist-2 quark operators:⟨

P +
∆

2

∣∣∣∣ q̄(0)γ{µi
↔
Dµ1 . . . i

↔
Dµm}q(0)

∣∣∣∣P− ∆

2

⟩
=

m∑
k=0

(
m
k

)
[
Fq

mk(t)2P{µ − Gq
mk(t)∆

{µ]Pµ1 . . .Pµm−k

(
−∆

2

)µm−k+1

. . .

(
−∆

2

)µm}

+1

+1

−1

−1

α

β

with

Fq
mk =

∫
Ω

dβdααkβm−kFq(β, α)

Gq
mk =

∫
Ω

dβdααkβm−kGq(β, α)
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GPDs in the rainbow ladder approximation.
Evaluation of triangle diagrams.

⟨xm⟩q =
1

2(P+)n+1

⟨
π,P +

∆

2

∣∣∣q̄(0)γ+(i←→D +)mq(0)
∣∣∣π,P− ∆

2

⟩

k− ∆
2 k + ∆

2

k− PP− ∆
2 P + ∆

2

∆
Compute Mellin moments
of the pion GPD H.

Triangle diagram approx.
Resum infinitely many
contributions.
Nonperturbative modeling.

Most GPD properties satisfied by construction.
Also compute crossed triangle diagram.

H. Moutarde Light Cone 2015 10 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GPDs in the rainbow ladder approximation.
Evaluation of triangle diagrams.

⟨xm⟩q =
1

2(P+)n+1

⟨
π,P +

∆

2

∣∣∣q̄(0)γ+(i←→D +)mq(0)
∣∣∣π,P− ∆

2

⟩

k− ∆
2 k + ∆

2

k− PP− ∆
2 P + ∆

2

∆
Compute Mellin moments
of the pion GPD H.
Triangle diagram approx.

Resum infinitely many
contributions.
Nonperturbative modeling.

Most GPD properties satisfied by construction.
Also compute crossed triangle diagram.

H. Moutarde Light Cone 2015 10 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

GPDs in the rainbow ladder approximation.
Evaluation of triangle diagrams.

⟨xm⟩q =
1

2(P+)n+1

⟨
π,P +

∆

2

∣∣∣q̄(0)γ+(i←→D +)mq(0)
∣∣∣π,P− ∆

2

⟩

k− ∆
2 k + ∆

2

k− PP− ∆
2 P + ∆

2

∆
Compute Mellin moments
of the pion GPD H.
Triangle diagram approx.
Resum infinitely many
contributions.

Nonperturbative modeling.

Dyson - Schwinger equation

−1
=

−1
+

Most GPD properties satisfied by construction.
Also compute crossed triangle diagram.
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Compute Mellin moments
of the pion GPD H.
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Resum infinitely many
contributions.

Nonperturbative modeling.

Bethe - Salpeter equation

=

Most GPD properties satisfied by construction.
Also compute crossed triangle diagram.
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Symmetry-preserving truncation.
Most of the GPD properties are obtained a priori.

Polynomiality from Poincaré covariance.

Soft pion theorem from symmetry-preserving
truncation of Bethe-Salpeter and gap equations.

Mezrag et al., Phys. Lett. B741, 190 (2015)
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Mellin moments.
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Interaction strength and phenomenology.
Constraints from the lattice and from spectroscopy.

Gap equation kernel depends on interaction strength
function I(k2).
Current model of I(k2) yields ground and excited-state
hadron masses with a 10-15 % accuracy compared to
experimental data.

Roberts et al., Few Body Syst. 51, 1 (2011)

 0
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 4
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 10

 12

 14

 16

 0  0.5  1  1.5  2  2.5

RL
DB

DSE

k2 [GeV2]

I(
k
2
)

Good agreement with
independent evaluation
from lattice data +
Dyson-Schwinger
equations.

Binosi et al., Phys. Lett.
B742, 183 (2015)
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Towards an algebraic model.
Dealing with the solutions of the gap and Bethe-Salpeter equations.

Numerical resolution of gap and Bethe-Salpeter equations
in Euclidean space.
Analytic continuation to Minkowskian space required.
Ill-posed problem in the sense of Hadamard.
Parameterize solutions and fit to numerical solution:

Gap Complex-conjugate pole representation:

S(k) =
N∑

i=0

[
zi

i/k + mi
+

z∗i
i/k + m∗

i

]
Bethe-Salpeter Nakanishi representation of amplitude Fπ:

Fπ(q2, q · P) =
∫ +1

−1
dα

∫ ∞

0
dλ ρ(α, λ)

(q2 + αq · P + λ2)n
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Algebraic model.
Intermediate step before using numerical solutions of Dyson-
Schwinger and Bethe-Salpeter equations.

Expressions for vertices and propagators:

S(p) =
[
− iγ· p + M

]
∆M(p2)

∆M(s) =
1

s + M2

Γπ(k, p) = iγ5
M
fπ

M2ν

∫ +1

−1
dz ρν(z)

[
∆M(k2+z)

]ν
ρν(z) = Rν(1− z2)ν

with Rν a normalization factor and k+z = k− p(1− z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:

Dimensionful parameter .
Dimensionless parameter

Fixed to 1 to recover
asymptotic pion DA.
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Verification of theoretical constraints.
Analytic expressions for the GPD H.

Analytic expression in the DGLAP region.

Hu
x≥ξ(x, ξ, 0) =

48

5

 3
(
−2(x − 1)4

(
2x2 − 5ξ2 + 3

)
log(1 − x)

)
20

(
ξ2 − 1

)3
3

(
+4ξ

(
15x2(x + 3) + (19x + 29)ξ4 + 5(x(x(x + 11) + 21) + 3)ξ2

)
tanh−1

(
(x−1)ξ

x−ξ2

))
20

(
ξ2 − 1

)3
+

3
(

x3(x(2(x − 4)x + 15) − 30) − 15(2x(x + 5) + 5)ξ4
)

log
(

x2 − ξ2
)

20
(
ξ2 − 1

)3
+

3
(
−5x(x(x(x + 2) + 36) + 18)ξ2 − 15ξ6

)
log

(
x2 − ξ2

)
20

(
ξ2 − 1

)3
+

3
(
2(x − 1)

(
(23x + 58)ξ4 + (x(x(x + 67) + 112) + 6)ξ2 + x(x((5 − 2x)x + 15) + 3)

))
20

(
ξ2 − 1

)3
+

3
((

15(2x(x + 5) + 5)ξ4 + 10x(3x(x + 5) + 11)ξ2
)

log
(
1 − ξ2

))
20

(
ξ2 − 1

)3
+

3
(
2x(5x(x + 2) − 6) + 15ξ6 − 5ξ2 + 3

)
log

(
1 − ξ2

)
20

(
ξ2 − 1

)3


Similar expression in the ERBL region.
Explicit check of support property and polynomiality
with correct powers of ξ.
Also direct verification using Mellin moments of H.

Valence Hu(x, ξ, t) as a function of x and ξ at vanishing t.

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde Light Cone 2015 17 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Verification of theoretical constraints.
Analytic expressions for the GPD H.

Analytic expression in the DGLAP region.
Similar expression in the ERBL region.

Explicit check of support property and polynomiality
with correct powers of ξ.
Also direct verification using Mellin moments of H.

Valence Hu(x, ξ, t) as a function of x and ξ at vanishing t.

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde Light Cone 2015 17 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Verification of theoretical constraints.
Analytic expressions for the GPD H.

Analytic expression in the DGLAP region.
Similar expression in the ERBL region.
Explicit check of support property and polynomiality
with correct powers of ξ.

Also direct verification using Mellin moments of H.
Valence Hu(x, ξ, t) as a function of x and ξ at vanishing t.

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde Light Cone 2015 17 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Verification of theoretical constraints.
Analytic expressions for the GPD H.

Analytic expression in the DGLAP region.
Similar expression in the ERBL region.
Explicit check of support property and polynomiality
with correct powers of ξ.
Also direct verification using Mellin moments of H.

Valence Hu(x, ξ, t) as a function of x and ξ at vanishing t.

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde Light Cone 2015 17 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Verification of theoretical constraints.
Analytic expressions for the GPD H.

Analytic expression in the DGLAP region.
Similar expression in the ERBL region.
Explicit check of support property and polynomiality
with correct powers of ξ.
Also direct verification using Mellin moments of H.

Valence Hu(x, ξ, t) as a function of x and ξ at vanishing t.

0.0

0.5

1.0

Ξ

-1.0-0.50.00.51.0

x

0.0

0.5

1.0

1.5

Mezrag et al., arXiv:1406.7425 [hep-ph]
H. Moutarde Light Cone 2015 17 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pion form factor.
Determination of the model dimensionful parameter M.

Pion form factor obtained from isovector GPD:∫ +1

−1
dx HI=1(x, ξ, t) = 2Fπ(t)

Single dimensionful parameter M ≃ 350 MeV.

0 0.5 1 1.5 2 2.5 3

-t [GeV
2
]

0

0.5

1
F

π
(t

)
Model (M=0.35 GeV)

Amendolia et al (1986)

Huber et al. (2008)

Model (M=0.25 GeV)

Model (M=0.45 GeV)

Mezrag et al., arXiv:1406.7425 [hep-ph]
H. Moutarde Light Cone 2015 18 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pion form factor.
Determination of the model dimensionful parameter M.

Pion form factor obtained from isovector GPD:∫ +1

−1
dx HI=1(x, ξ, t) = 2Fπ(t)

Single dimensionful parameter M ≃ 350 MeV.

0 0.1 0.2 0.3 0.4

-t [GeV
2
]

0.5

1
F

π
(t

)
Model (M=0.35 GeV)

Amendolia et al (1986)

Huber et al. (2008)

Model (M=0.25 GeV)

Model (M=0.45 GeV)

Mezrag et al., arXiv:1406.7425 [hep-ph]
H. Moutarde Light Cone 2015 18 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pion form factor.
Determination of the model dimensionful parameter M.

Pion form factor obtained from isovector GPD:∫ +1

−1
dx HI=1(x, ξ, t) = 2Fπ(t)

Single dimensionful parameter M ≃ 350 MeV.

0 0.5 1 1.5 2 2.5 3

-t [GeV
2
]

0

0.5

1

F
π
(t

)

Model (M=0.35 GeV)

Amendolia et al (1986)

Huber et al. (2008)

Model (M=0.25 GeV)

Model (M=0.45 GeV)

0 0.1 0.2 0.3 0.4

-t [GeV
2
]

0.5

1

F
π
(t

)

Model (M=0.35 GeV)

Amendolia et al (1986)

Huber et al. (2008)

Model (M=0.25 GeV)

Model (M=0.45 GeV)

Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde Light Cone 2015 18 / 25



Sketching the
pion GPD

Introduction

Theoretical
framework
Definition

Double Distributions

GPD modeling
Diagrams

Preserving
symmetries

Algebraic model

Results
Checks

Form factor

Pion PDF

Extension
Overlap
representation

2-body system

Conclusions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pion Parton Distribution Function.
Determination of the model initial scale.

Pion PDF obtained from forward limit of GPD:
q(x) = Hq(x, 0, 0)

Use LO DGLAP equation and compare to PDF extraction.
Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

Mezrag et al., arXiv:1406.7425 [hep-ph]
Find model initial scale µ ≃ 400 MeV.
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Overlap representation.
A first-principle connection with Light Front Wave Functions.

Decompose an hadronic state |H;P, λ⟩ in a Fock basis:

|H;P, λ⟩ =
∑
N,β

∫
[dxdk⊥]Nψ

(β,λ)
N (x1,k⊥1, . . . , xN,k⊥N) |β, k1, . . . , kN⟩

Derive an expression for the pion GPD in the DGLAP
region ξ ≤ x ≤ 1:

Hq(x, ξ, t) ∝
∑
β,j

∫
[dx̄dk̄⊥]Nδj,qδ(x−x̄j)ψ

(β,λ)∗
N (x̂′, k̂′

⊥)ψ
(β,λ)
N (x̃, k̃⊥)

with x̃, k̃⊥ (resp. x̂′, k̂′
⊥) generically denoting incoming

(resp. outgoing) parton kinematics.
Diehl et al., Nucl. Phys. B596, 33 (2001)

Similar expression in the ERBL region −ξ ≤ x ≤ ξ, but
with overlap of N- and (N + 2)-body LFWF.
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Pion Parton Distribution Function.
Algebraic model in the overlap representation.

Evaluate LFWF in algebraic model:

ψ(x,k⊥) ∝
x(1− x)

[(k⊥ − xP⊥)2 + M2]2

Expression for the GPD at t = 0:

H(x, ξ, 0) ∝ (1− x)2(x2 − ξ2)
(1− ξ2)2

Overlap Triangle diagram

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

qHxL Manifest 2-body symmetry.
Expression for the PDF:

q(x) = 30x2(1− x)2

Off-forward case: in progress.
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Conclusions and prospects.
Symmetry-preserving GPD modeling.

Computation of GPDs, DDs, PDFs, LFWFs and form
factors in the nonperturbative framework of
Dyson-Schwinger and Bethe-Salpeter equations.

Explicit check of several theoretical constraints, including
polynomiality, support property and soft pion theorem.

Simple algebraic model exhibits most features of the
numerical solutions of the Dyson-Schwinger and
Bethe-Salpeter equations.

Very good agreement with existing pion form factor and
PDF data.

In progress: a priori implementation of polynomiality and
positivity.
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