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Motivation

Deeply-virtual Compton scattering (DVCS) has been proposed to
determine the generalized-parton distributions (GPDs) of hadrons.
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soft part 

Handbag diagram, including the leptonic part

A hard photon, q2 = −Q2, with Q much larger than the characteristic
hadronic scales, probes the quark content of the hadronic target. The
detection of the outgoing, real photon provides information not contained
in deep-inelastic scattering (DIS).
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It is important to realize that GPDs are not invariant quantities. They
are related asymptotically, i.e., for large Q, and for small Mandelstam t
to Compton form factors (CFFs).

Even if the experimental data are analysed in terms of these
Lorentz-invariant quantities, it is not immediately clear what are the
sensitivities of the data to the CFFs.

In a simple case, namely VCS on a scalar target where the minimal
number of diagrams that are necessary to maintain EM current
conservation are known, the corrections to the tree-level case can be
calculated. We have found their scaling with Q2.

In practice, the VCS amplitude interferes with the Bethe-Heitler
amplitude. The latter one does only depend on the EM form factor(s)
and thus give by itself no information about the CFFs.
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Formalism

We shall concentrate on the DVCS part of the amplitude and even ignore
the leptonic part, because it is independent of the CFFs.

In virtual Compton scattering the physical amplitudes can be written as
the contraction of a tensor operator with the photon polarization vectors.

It is important to use the most general form of that tensor
operator consistent with EM gauge invariance.

We shall briefly discuss two proposals, one by Tarrach2, and the other by
Metz3, and compare the two.

2M. Perrottet, Lett. Nuovo Cim. 7, 915 (1973);
R. Tarrach, Nuovo Cim. 28 A, 409 (1975)

3A. Metz, Virtuelle Comptonstreuung und die Polarisierbarkeiten des
Nukleons (in German), PhD thesis, Universität mainz, 1997.
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Tensor Formulation

We write the physical amplitudes as contractions of a tensor with the
polarization vectors of the photons:

A(h′, h) = ε∗(q′; h′)µT
µνε(q; h)ν .

The tensor Tµν must be transverse, i.e.,

q′µT
µν = 0, Tµνqν = 0.

The tensor is written in terms of scalars (CFFs) and basis tensors.

In the case we study, namely DVCS on a scalar hadron, to find the
number of independent tensor structures we first identify the independent
momenta. From four-momentum conservation it follows that out of the 4
external momenta one may choose 3 independent ones.
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We keep q and q′, to simplify a check of the transversity of the tensor.
For the remaining one we choose the sum of the hadronic momenta,
P̄ = p′ + p. Our basis is k1 = P̄, k2 = q′, k3 = q.

The most general second-rank tensor expressed in terms of our basis is
then:

Tµν = T0 gµν +
∑
i,j

Tij kiµkjν .

By contracting Tµν with q′µ and qν , which must give the result 0 for the
physical tensor, one can determine the number of independent scalars T .

As there are 10 T s and the number of independent contractions is 5,
there are 5 CFFs in the effective tensor.

As the 5 independent tensor structures can be chosen in an infinite
number of ways, we look for a synthetic way to construct the effective
tensor.

Note the difference with the case of a spin-1/2 target, where the

γ-matrices can be included in the basis for the tensor. This leads to a

tensor with 18 independent parts.
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Following Tarrach, we find it useful to construct the tensor Tµν by
applying a two-sided projector g̃µν(q, q′) to the most general second rank
tensor expressed in terms of our basis:

Tµν = g̃µm tmn g̃
nν , tmn = t0 gmn +

∑
i,j

tij ki mkj n.

The two-sided projector g̃(q, q′) is defined as follows:

g̃µν(q, q′) = gµν − qµq′ν

q · q′ .

This projector has the properties

g̃µm gmn g̃
nν = g̃µν , q′µ g̃

µν = 0, g̃µνqν = 0.

The application of g̃µm and g̃nν removes the parts of tmn that contain

the left factor qm or the right factor q′n.
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We define the reduced momenta, (k = P̄, q′, q):

k̃µL = g̃µmkm, k̃νR = kn g̃
nν

and find for unrestricted kinematics the followoing result for Tµν

Tµν = H0 g̃µν +H1 P̃µL P̃
ν
R +H2 P̃µL q̃

ν
R +H3 q̃′µL P̃νR +H4 q̃′µL q̃νR.

Contracting the tensor with ε∗µ(q′) and εν(q) we find that all 5 pieces of

the tensor contribute, if q′2 6= 0 and q2 6= 0.

The number of independent tensor structures is equal to the number of
independent physical matrix elements consistent with parity conservation:
A(−h′,−h) = (−1)h

′−hA(h′, h), h′, h = ±1, 0,

A(1, 1), A(1, 0), A(1,−1), A(0, 1), and A(0, 0).
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If either of the photons is real, some pieces of the tensor do not
contribute to the physical amplitudes: the tensor is reduced to an
effective tensor.

For instance, consider the case where one of the photons is real, say
q′ 2 = 0, then the number of independent physical amplitudes reduces to
3, say A(1, 1), A(1, 0), and A(1,−1).

The vector q̃′L reduces to q′ which is orthogonal to ε(q′) and thus the
CFFs H3 and H4 do not contribute, reducing the full tensor Tµν to an
effective one with only 3 independent pieces.

Finally, if both photons are real, the number of active CFFs reduces to 2,
which equals the number of independent physical amplitudes A(1, 1) and
A(1,−1). The effective tensor has in this case the same form as the
tree-level tensor.

Thus, the number of CFFs in the effective tensor equals the number of
independent physical matrix elements.
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Metz’s approach

The method using the projectors introduces a kinematical singularity at
q′ · q = 0. In Tarrach’s paper a method is described to remove these
kinematic poles. Here we give the final result of that algorithm as
obtained in the thesis of Metz. His CFFs in the scalar case are denoted
as B1, B2, B3, B4, and B19. They are implicitly given in terms of the
elementary tensor by the following equations:

Mµν = B1Mµν
1 + B2Mµν

2 + B3Mµν
3 + B4M

µν
4 + B19M

µν
19 ,

Mµν
1 = −q′ · q gµν + qµq′

ν
,

Mµν
2 = −(P̄ · q)2 gµν − q′ · q P̄µP̄ν + P̄ · q (P̄µq′

ν
+ qµP̄ν),

Mµν
3 = q′

2
q2 gµν + q′ · q q′µqν − q2 q′

µ
q′
ν − q′

2
qµqν ,

Mµν
4 = P̄ · q (q′

2
+ q2) gµν − P̄ · q (q′

µ
q′
ν

+ qµqν)

−q2 P̄µq′ν − q′
2
qµP̄ν + q′ · q (P̄µqν + q′

µ
P̄ν),

Mµν
19 = (P̄ · q)2 q′

µ
qν + q′

2
q2 P̄µP̄ν − P̄ · q q2 q′µP̄ν − P̄ · q q′2 P̄µqν .
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Metz’s five basis tensors are also transverse to q′µ and qν . One can easily
check that the following expansions of the Mj in terms of Tarrach’s
transverse momenta holds:

Mµν
1 = −q′ · q g̃µν ,

Mµν
2 = −(P̄ · q)2 g̃µν − q′ · q P̃µL P̃νR ,

Mµν
3 = q′

2
q2 g̃µν + q′ · q q̃′µL q̃νR,

Mµν
4 = P̄ · q (q′

2
+ q2) g̃µν + q′ · q (P̃µL q̃

ν
R + q̃′µL P̃νR),

Mµν
19 = q′

2
q2 P̃µL P̃

ν
R − P̄ · q q′2 P̃µL q̃νR − P̄ · q q2 q̃′µL P̃νR + (P̄ · q)2 q̃′µL q̃νR.

To check the transversity of Mµν one needs to use the identity

P̄ · q = P̄ · q′.
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The relations between the CFFs Hi and the CFFs Bj is found by
identifying Mµν and Tµν . The results are

H0 = −q′ · q B1 − (P̄ · q)2 B2 + q′
2
q2 B3 + P̄ · q (q′

2
+ q2)B4,

H1 = −q′ · q B2 + q2q′
2 B19,

H2 = q′ · q B4 − P̄ · q q′2B19,
H3 = q′ · q B4 − P̄ · q q2B19,
H4 = q′ · q B3 + (P̄ · q)2 B19.

If q′2 = 0, which is the case we treat here, the independent CFFs are
B1,2, and B4, which agrees with the number of independent amplitudes.
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Tree-level DVCS

p
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q’q

p’p

q q’

seagull s-channel u-channel

The tree-level DVCS amplitude corresponds in Tarrach formulation to the
CFFs

Htree
0 = −2, Htree

1 =
1

s −M2
+

1

u −M2
, Htree

3 = 0,

and in Metz formulation

Btree1 =
1

s −M2
+

1

u −M2
, Btree2 = − 2

(s −M2)(u −M2)
, Btree4 = 0,

s = (p + q)2, u = (p − q′)2, M is the target hadron’s mass.
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Amplitudes

Here, we shall not use any dynamical model for the CFFs, but rather use
the tree-level CFFs in Metz’s formulation to study the sensitivities of the
cross sections for the CFFs. In this formulation the whole interval
0 ≤ θ ≤ π can be explored.

As we do not include the Bethe-Heitler amplitudes, we shall consider the
VCS amplitudes only.

In a simple model where the internal structure of the target is included at
one-loop level, one finds that the corrections to the tree-level CFFs scale
as logQ2/Q2. Therefore, as a working hypothesis, we assume that for
an estimate of the sensitivities of the cross section it is not necessary to
use a realistic model.
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It is known4 that to second order in g the following diagrams must be
included to guarantee EM gauge invariance:
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4C.-R. Ji and BLGB, Int. J. Mod. Phys. E 22, 1330002 (2013)
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When the integrals determining the amplitude corresponding to these
diagrams are done, one finds that the corrections at one-loop level scale
as

1

Qn
log(A + BQ2),

where the functions A and B depend on the Mandelstam variables and
the Feynman parameters. The power n is 2 for H0 and 4 for H1,2 The
imaginary parts scale as 1/Qn

We shall not consider this model in the present work. Instead we
use the tree-level CFFs in Metz’s formulation and consider variation by
±10% for B1 and B2 to study the sensitivity of the cross section to them.
Furthermore, we add a third CFF, namely B4 for which we take 0 (the
tree-level value) and ±0.1 B2.
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Kinematics
In the hadronic CMF the momenta are defined as

pµ = (EC,−qC sin θC, 0,−qC cos θC),

qµ = (q0C, qC sin θC, 0, qC cos θC),

p′
µ

= (E ′C,−q′C sin θ′C, 0,−q′C cos θ′C),

q′
µ

= (q′C, q
′
C sin θ′C, 0, q

′
C cos θ′C).

with

qC =

√
(s −M2 − Q2)2 + 4sQ2

2
√
s

, EC =
s + M2 + Q2

2
√
s

,

q0C =
s −M2 − Q2

2
√
s

,

q′C =
s −M2

2
√
s
, E ′C =

s + M2

2
√
s
.

Superficially, the momenta scale as Q2, but we can use the Bjorken

variable xBj to relate the Mandelstam variable s to the mass M and Q2.
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Using the definition of the Bjorken variable: xBj = Q2/(2p · q), we find

xBj =
Q2

s + Q2 −M2
↔ s = M2 +

1− xBj
xBj

Q2.

Thus s is of order Q2, which shows that in the CMF all non-vanishing
momentum components are of order Q.

It is common practice in the treatment of DVCS, to rotate the coordinate
system such that the z-axis is along the three-momentum of the virtual
photon. Then θC = 0. The quantity θ := θ′C − θC, the scattering angle in
the CMF, then coincides with θ′C.
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Polarization vectors

To calculate the amplitudes, we need the polarization vectors. The
polarization vectors of the incoming virtual photon in the CMF are

εµ(q,±1) =
1√
2

(0,∓ cos θC, i ,± sin θC)

εµ(q, 0) =
1√
−Q2

(qC, q
0
C sin θC, 0, q

0
C cos θC)

The ones for the final state are obtained by replacing θC by θ′C and q0

and qC by q′C, and dropping the one with helicity 0.
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Numerical calculations
We calculate the tree-level amplitudes for two realistic kinematical
situations, given in a document written by Julie Roche and co-workers.
We take the kinematics for the lowest value of the virtuality of the photon
considered there, namely Q2 = 1.9 GeV2, and the largest, Q2 = 9 GeV2.

Then we use the Metz tensor to calculate the amplitudes using the
tree-level CFFs and vary their numerical values in a range of ±10%.

Finally, we calculate the model-dependent part of the DVCS cross
section, i.e., the sum of the squared amplitudes over the spin
components. Because we consider a scalar target, the only spin degrees
of freedom are the helicities of the virtual and the real photon.

Because of parity conservation,

A(−h′,−h) = (−1)h
′−hA(h′, h), h′, h = ±1, 0,

we find no polarization:∑
h

|A(1, h)|2 − |A(−1, h)|2 = 0.
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θq q = (k − k′)

Q2 xBj k k′ θe θq q′(0◦) W 2

2 (◦) (◦) 2

• xBj ≤ 0.2

• xBj = 0.7 k = 8.8

xBj

(e, e′γ)p t = (q − q′)2

q̂′ q′
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We want to know in what kinematical region the greatest sensitivities of
the pseudo cross section ∑

h′h

|A(h′, h)|2

occurs. Therefore we need to explore for a given xBj and Q2 the whole
kinematical domain as parametrized by 0 ≤ θ ≤ π.

We start with plots of the θ-dependence of the CFFs B1 and B2.

Btree1 =
1

s −M2
+

1

u −M2
, Btree2 = − 2

(s −M2)(u −M2)
.

The quantity s is independent of θ, so u carries this dependence. Both s
and u behave like 1/Q2, which explains the scale difference between the
plots.

Finally, we compare the case M = 0.938 GeV (proton) with the case
M = 3.7273 GeV (4He). We start with plots of the CFFs.
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Compton form factors B1 (blue) and B2 (red).

Q2 = 1.9 (GeV/c)2, M = 0.938 GeV/c2
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Compton form factors B1 (blue) and B2 (red).

Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2
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Compton form factors B1 (blue) and B2 (red).

Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2
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Compton form factors B1 (blue) and B2 (red).

Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2



Motivation Formalism Amplitudes Numerical calculations Summary and conclusions

The next figures show the tree-level Compton amplitudes as a function of
θ. At tree-level there exists an additional symmetry

A(1, 1) + A(1,−1) = 2.

The amplitudes A(±1, 0) are purely imaginary at tree level; therefore we
plot A(1, 0)/i (red curve).
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Amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938 GeV/c2
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Amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2
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Amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2
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Amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2
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The absolute values of the squared amplitudes are more interesting,
because they occur in the cross section.

Notice that the amplitudes A(±1, 0) dominate, at least at large values of
θ, which corresponds to the target recoiling in the forward direction.

This dominance is less prominent for the larger target mass.
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938 GeV/c2
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2
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Squared Amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2
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The variation of the amplitudes when B1 is varied by ±10% show that for
small target mass and small Q2 the variations are smaller than for larger
target mass and larger Q2.

The non-flip amplitude A(1, 1) is the least sensitive one, the double flip
amplitude A(1,−1) is most sensitive, while A(1, 0), though dominant,
varies moderately.
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B1 is varied by ±10%
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B1 is varied by ±10%
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B1 is varied by ±10%
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B1 is varied by ±10%
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The variations of the amplitudes when B2 is varied by ±10% show again
that for small target mass and small Q2 the variations are smaller than
for larger target mass and larger Q2.

However, the variations for all amplitudes are much larger that the ones
induced by variation of B1 .

The non-flip amplitude A(1, 1) is the least sensitive one, the double flip
amplitude A(1,−1) is most sensitive, while A(1, 0), though dominant,
varies moderately.
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B2 is varied by ±10%
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B2 is varied by ±10%
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B2 is varied by ±10%
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B2 is varied by ±10%
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The variation of the amplitudes when B3 is varied by ±10% show again
that for large target mass M and small Q2 the variations are smaller than
for smaller target mass and larger Q2.

This dependence on the target mass is much stronger than for the
variations induced by B2.

Again, the non-flip amplitude A(1, 1) is the least sensitive one, the
double flip amplitude A(1,−1) is most sensitive, while A(1, 0, though
dominant, varies moderately.
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B3 is varied by ±10% of B2
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Squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B3 is varied by ±10% of B2
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Squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B3 is varied by ±10% of B2



Motivation Formalism Amplitudes Numerical calculations Summary and conclusions

Squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B3 is varied by ±10% of B2
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Finally, we show the variations of the pseudo-cross section
∑ |A|2.
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B1 is varied by ±10%
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Sum of squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B1 is varied by ±10%
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B1 is varied by ±10%
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Sum of quared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B1 is varied by ±10%
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B2 is varied by ±10%
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Sum of squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B2 is varied by ±10%
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B2 is varied by ±10%
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Sum of squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B2 is varied by ±10%
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 0.938GeV/c2.

The CFF B3 is varied by ±10% of B2
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Sum of squared amplitudes for Q2 = 9 (GeV/c)2, M = 0.938 GeV/c2.

The CFF B3 is varied by ±10% of B2
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Sum of squared amplitudes for Q2 = 1.9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B3 is varied by ±10% of B2
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Sum of squared amplitudes for Q2 = 9 (GeV/c)2, M = 3.7273 GeV/c2.

The CFF B3 is varied by ±10% of B2
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Summary and conclusions

1. In the comparatively simple case of DVCS on a scalar target, it is
not clear that one can disentangle the differential cross section to
determine all three CFFs.

2. Only the interference with the Bethe-Heitler may give additional
information on the CFFs.

3. The amplitudes A(±i , 0) are dominant. In the forward hemisphere
where the recoiled target moves forward, these amplitudes are most
sensitive to B2.

4. The basis used by Metz and co-workers can be related linearly to
our basis.

5. Using a non-singular basis like Metz’s is essential to the analysis of
the differential cross section data.
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