INSIDE in-beam PET simulation

Elisa Fiorina
on behalf of the Torino INSIDE group

PET simulation and image reconstruction workflow

PET events generator (1)

1) Annihilation map

- Custom source based on activity map
- All the interspill annihilations are considered
- Full treatment simulation spends 1 h with 4 cores
- Two gammas back-to-back are generated

PROBLEM:
number of annihilation not significant for generator construction (voxel with max activity has 7 annihilations)
\longrightarrow abandoned approach

PET events generator (2)

2) Isotopes production map

- Custom source based on isotopes production map
- ${ }^{11} \mathrm{C},{ }^{15} \mathrm{O}$ and ${ }^{10} \mathrm{C}$ are considered (about 90% of events)
- Full treatment simulation spends 30 min with 30 cores
- Two gammas back-to-back are generated

Satisfactory statistics with voxel of $2 \times 2 \times 2 \mathrm{~mm}^{3}$ for each spill
\rightarrow sampling of isotope type, position and decay time

PET events generator (3)

3) Isotopes production list

- Custom source based on isotopes production list
- ${ }^{11} \mathrm{C},{ }^{15} \mathrm{O}$ and ${ }^{10} \mathrm{C}$ are considered (about 90% of events)
- Full treatment simulation spends 20 min with 25 cores
- Positrons are generated

The spatial spread is given by the positron walk.
The time spread is ensured by the decay time.
\rightarrow The simulation is faster and takes into account all physics processes.

INSIDE PET Simulation (1)

INPUT: isotopes list generator $\left({ }^{11} \mathrm{C},{ }^{15} \mathrm{O}\right.$ and $\left.{ }^{10} \mathrm{C}\right)$
In each position, 100 positrons are injected.
1)The annihilation position takes into account the positron walk and the decay time.
2)The positron energy is sampled.

INSIDE meeting, Roma, December $18^{\text {th }} 2014$

INSIDE PET Simulation (2)

OPTIMIZATIONS:

- If the annihilation time is greater than a limit value (e.g.: 1800 s, 3600 s) the particle weight is set to 0 (not tracked): GAIN IN SIMULATION TIME
- If the initial positron energy is less than the energy cut limit (typically 100 keV), the position of the positron production is sampled into a $1 \times 1 \times 1 \mathrm{~mm}^{3}$ cube to avoid artifact.
- The minimum kinetic energy to track positrons is set to 5 keV in the air and to 100 keV elsewhere to avoid border artifacts due to differences in material density.

Simulated data post processing

- Custom c++ classes
- Simulation output sorting
- Energy and time resolution added
- Energy filtering around photopeak
- Coincidences finding (true/random)
- LOR file output (list mode)

Image reconstruction

- Quantity reconstructed in images is activity relative distribution
- $1.6 \times 1.6 \times 1.6 \mathrm{~mm}^{3}$ voxel, FOV $16 \times 9.6 \times 21.2 \mathrm{~cm}^{3}$

Each INSIDE configuration (e.g. different distances between heads) requires a different model to perform the image reconstruction.

- Conversion from .gipl format to the NIFTI format with the ITK libraries to allow image analysis

INSIDE Simulated Set Up (1)

- Simulated detector response
- Updated geometry: 10 vs 10 modules distance between heads equal to 50 cm

INSIDE Simulated Set Up (2)

- PMMA phantom $8 \times 8 \times 9 \mathrm{~cm}^{3}$ at FOV center
- 2 Gy protons treatment, 31 spill
- Uniform irradiation of a $3 \times 3 \times 3 \mathrm{~cm}^{3}$ cube at $\mathrm{z}=[3,6] \mathrm{cm}$
- Nominal INSIDE geometry
- Isotopes list generator: 93.5% of annihilations are simulated
- Acquisition of inter-spill data only for the treatment duration (no after-treatment)
- Simulated $15 \% \sigma \Delta E / E$ and 250 ps σ time resolution
- 3 ns time window ${ }^{1}$
- 5 iterations image reconstruction

Results (1)

Grayscale : reconstructed PET image

- Inter-spill acquisition
- About 57000 acquired LORs
- Artifacts on the direction between heads
Colors: simulated activity

Results (2)

Normalized z profile: $x=0 \mathrm{~mm}$, delta $\mathrm{y}=12.8 \mathrm{~mm}\left(1.6 \times 1.6 \times 1.6 \mathrm{~mm}^{3}\right)$

Blue line: reconstructed PET image Z profile at $x=0$ and y from -6.4 to 6.4 mm Red line: simulated activity Z profile at $x=0$ and y from -6.4 to 6.4 mm

Conclusions

1) PET simulation and image reconstruction workflow works both for simulated and real data
2) Upgraded simulation:

- more reliable physics (positron walk, positron energy spectrum, positron production and transport energy cuts)
- faster (isotopes production list generator, decay time cut)

3) The distal falls off of the reconstructed image and simulated activity are compatible

Proposed next steps

- Simulations of the next beam test acquisition
- Directional bias
- Validation with dedicated acquisitions during next beam test (INSIDE 1vs1 set up)
- Spill after spill (tentative) image reconstruction
- Image uniformity and distortion evaluation
- Carbon ions
- Integration with tracker

Back Up

${ }^{11} \mathrm{C},{ }^{10} \mathrm{C}$ and ${ }^{15} \mathrm{O}$ isotopes

	${ }^{11} \mathrm{C}$	${ }^{10} \mathrm{C}$	${ }^{15} \mathrm{O}$
Half life	1220.04 s	19.290 s	122.4 s
\% of tot. ann.	69%	2%	23%
\% of interspill ann.	4%	75%	30%

Results: isotopes map based simulation (1)

Grayscale : reconstructed PET image

- Inter-spill acquisition
- 45000 acquired LORs
- Artifacts on the direction between heads

Colors: simulated activity

Results: isotopes map based simulation (2)

Blue line : reconstructed PET image Z profile at $x=0$ and y from -6.4 to 6.4 mm
Red: simulated activity Z profile
Normalized profiles between z=56 and z=136 mm

