

INSIDE in-beam PET simulation

Elisa Fiorina on behalf of the Torino INSIDE group

INSIDE meeting, Roma, December 18th 2014

PET simulation and image reconstruction workflow

PET events generator (1)

1) Annihilation map

- Custom source based on activity map
- All the interspill annihilations are considered
- Full treatment simulation spends 1 h with 4 cores
- Two gammas back-to-back are generated

PROBLEM: number of annihilation not significant for generator construction (voxel with max activity has 7 annihilations)

→ abandoned approach

PET events generator (2)

2) Isotopes production map

- Custom source based on isotopes production map
- ¹¹C, ¹⁵O and ¹⁰C are considered (about 90% of events)
- Full treatment simulation spends 30 min with 30 cores
- Two gammas back-to-back are generated

Satisfactory statistics with voxel of 2x2x2mm³ for each spill

→ sampling of isotope type, position and decay time

PET events generator (3)

3) Isotopes production list

- Custom source based on isotopes production list
- ¹¹C, ¹⁵O and ¹⁰C are considered (about 90% of events)
- Full treatment simulation spends 20 min with 25 cores
- Positrons are generated

The spatial spread is given by the positron walk.

The time spread is ensured by the decay time.

→ The simulation is faster and takes into account all physics processes.

INSIDE PET Simulation (1)

INPUT: isotopes list generator (¹¹C, ¹⁵O and ¹⁰C)

In each position, 100 positrons are injected.

1)The annihilation position takes into account the positron walk and the decay time.

2)The positron energy is sampled.

INSIDE PET Simulation (2)

OPTIMIZATIONS:

• If the annihilation time is greater than a limit value (e.g.: 1800 s, 3600 s) the particle weight is set to 0 (not tracked): GAIN IN SIMULATION TIME

• If the initial positron energy is less than the energy cut limit (typically 100 keV), the position of the positron production is sampled into a 1x1x1 mm³ cube to avoid artifact.

• The minimum kinetic energy to track positrons is set to 5 keV in the air and to 100 keV elsewhere to avoid border artifacts due to differences in material density.

Simulated data post processing

- Custom c++ classes
 - Simulation output sorting
 - Energy and time resolution added
 - Energy filtering around photopeak
 - Coincidences finding (true/random)
 - LOR file output (list mode)

Image reconstruction

- Quantity reconstructed in images is activity relative distribution
- 1.6x1.6x1.6 mm³ voxel, FOV 16x9.6x21.2 cm³

Each INSIDE configuration (e.g. different distances between heads) requires a different model to perform the image reconstruction.

 Conversion from .gipl format to the NIFTI format with the ITK libraries to allow image analysis

INSIDE Simulated Set Up (1)

- Simulated detector response
- Updated geometry: 10 vs 10 modules

distance between heads equal to 50 cm

INSIDE Simulated Set Up (2)

- PMMA phantom 8x8x9 cm³ at FOV center
- 2 Gy protons treatment, 31 spill
- Uniform irradiation of a 3x3x3cm³ cube at z=[3,6]cm
- Nominal INSIDE geometry
- Isotopes list generator: 93.5% of annihilations are simulated
- Acquisition of inter-spill data only for the treatment duration (no after-treatment)
- Simulated 15% σ $\Delta\text{E/E}$ and 250 ps σ time resolution
- 3 ns time window¹
- 5 iterations image reconstruction

¹Maybe too large for the time resolution but random coincidences contribution is negligible in inter-spill

Results (1)

Grayscale : reconstructed PET image

- Inter-spill acquisition
- About 57000 acquired LORs
- Artifacts on the direction between heads

Colors: simulated activity

Results (2)

Blue line: reconstructed PET image Z profile at x = 0 and y from -6.4 to 6.4 mm Red line: simulated activity Z profile at x = 0 and y from -6.4 to 6.4 mm

Conclusions

- 1) PET simulation and image reconstruction workflow works <u>both for simulated and real data</u>
- 2) Upgraded simulation:
 - <u>more reliable physics</u> (positron walk, positron energy spectrum, positron production and transport energy cuts)
 - <u>faster</u> (isotopes production list generator, decay time cut)
- 3) The distal falls off of the reconstructed image and simulated activity are compatible

Proposed next steps

- Simulations of the next beam test acquisition
- Directional bias
- Validation with dedicated acquisitions during next beam test (INSIDE 1vs1 set up)
- Spill after spill (tentative) image reconstruction
- Image uniformity and distortion evaluation
- Carbon ions
- Integration with tracker

Back Up

¹¹C, ¹⁰C and ¹⁵O isotopes

	¹¹ C	¹⁰ C	¹⁵ O
Half life	1220.04 s	19.290 s	122.4 s
% of tot. ann.	69%	2%	23%
% of interspill ann.	4%	75%	30%

Results: isotopes map based simulation (1)

Grayscale : reconstructed PET image

- Inter-spill acquisition
- 45000 acquired LORs
- Artifacts on the direction between heads

Colors: simulated activity

Results: isotopes map based simulation (2)

Blue line : reconstructed PET image Z profile at x = 0 and y from -6.4 to 6.4 mm Red: simulated activity Z profile Normalized profiles between z=56 and z=136 mm