

ECL::Software Update on Simulations

B. Oberhof, E. De Lucia

Italian ECL Meeting, 12th December 2014

Overview

- Upgrade oriented simulations started after November B2GM:
 - We had to develope our own tools to analyze stuff
 - Realitstic bkg simulation for ECL is available since short time (about 10 days, see M. Staric's talk at ECL meeting 28th November)
- Intrinsic detector resolution and related effects:
 - Check for border effects and defined suitable region for FW studies
 - Energy scan of resolution function
 - Particular focus at 100MeV as benchmark for future studies
- Resolution in the presence of beam-backgrouns:
 - 500MeV photons to define selection criteria
 - Study of resolution for 100MeV photons.. ongoing

Intrinsic resolution studies

- I started from nominal geometry using full FWD endcap
- Compared 3 different geometries:
 - ECL only (green)
 - Full detector without ARICH (as discussed at last B2GM) (red)
 - Full detector (blue)
- 5000 events, single 100MeV photons from pGun
- No big effect of other subdetectors on resolution, rather on efficiency

Intrinsic resolution remarks

- The nominal geometry FWD (12.01° 31.30°) and actual MC acceptance have observed to be different
- High loss of events (i.e. Clusters) close to the inner ring (actual MC acceptance is 12.4° 31.35°)
- Other strange border effects obse

mcPz {eclCluster_Multip>0}

 I decided to focus on a smaller ring 20° < theta < 24° FWD (3-4 fwd crystals) for further studies

Energy resolution

- Individual energies fitted with Crystal Ball function
- Energy range 20 MeV to 2 GeV, 5000 evts each
- Resolution function from TDR in green

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{0.066\%}{E}\right)^2 + \left(\frac{0.81\%}{\sqrt[4]{E}}\right)^2 + (1.34\%)^2},$$

Energy resolution

Cluster E

Energy resolution

Not really good agreement, seems to depend from ECL alone

Background

- Background window has finally been fixed (-17.6, 8.5 us):
 - ADC clock = 508 MHz / (24 x 12) = 1.764 MHz ==> 567 ns/sample waveform fit \rightarrow 15 samples = 8.504 us, pedestal fit \rightarrow 16 samples = 9.071 us time window before 0 = 17.576 us, time window after 0 = waveform duration = 8.504 us
- New bkg mixer released, allows different t windows for different subdets
- (Reminder: all detectors use -1, 0.8 us win., except ECL and PXD)
- Additional bkg files are available for ECL since about 1 week

- 0.5GeV photons as benchmark for selection in presence of bkg
- 198 events, single 0.5 GeV photon in 20° < theta < 24°
- 32346 clusters, mostly low-E (but not only!)

• Tried to make an easy and clean selection: timing, E9oE25, minE

About timing..

- ECL digitizer clock rate is 1.76388 Mhz (=567 ns)⁻¹
- Actual event timing unit for ECL is 567/(96*16) ns (..don't ask me!)
- Cluster are accepted if they fall +-567 ns from trigger
- This corresponds to 3072 "ECL units" (or steps) ("ECL Unit" = 0.37 ns)
- Timing is expected to be good down to 10ns (RMS)
- Physics ECL time is peaked at 2350 "steps" (code bias)
- I decided to accept only events falling between 2300 and 2400 "steps"

- E9oE25 describes shower shape
- It's close to 1 for "good" photons while tends to be uniform for random (low-energy) beam-background

- First sel step: 2300 < t < 2400 AND E9oE25 > 0.9
- Survive: 256 clusters, 162 associated to pGun photons
- Second sel step: E > 50 MeV (this was standard value for "good"-photons lis at BaBar)
- Survive 167 clusters, 161 signals \rightarrow eff= 81%, purity= 96.4%

- Now let's try with the difficult case
- 300 events, single 0.1 GeV photon in 20° < theta < 24°
- Now signal is completely enveloped in bkg "tail"

I used the same selection steps defined before

- First sel step: 2300 < t < 2400 AND E9oE25 > 0.9
- Survive: 180clusters, 71 associated to pGun photons
- Second sel step: E > 50 MeV
- Survive 72 clusters, 69 signals \rightarrow eff= 23%, purity= 95.8%

Background remarks

- You may ask yourself (or have already asked me): why just few hundred events, why didn't you make a nice resolution fit in bkg case?
- Working offline (not KEK) with bkg, right now, is quite annoying:
 - the weight of 50 events is, on average, is 200Mb (single photon, no real physics event..)
 - Transfer rate from KEK to LNF is about 200Kb/s..
 - KEK and LNF both have login machines, that makes transferring files even more complicated
 - Limited storage area at LNF, and max file transfer size (about 200Mb)

Background remarks (2)

- There are some (significant) discrepancies between current and previous releases, the reason is not clear, we have ot investigate
- That's a crucial point: currently bkg people seems not to know enough about ECL and vice-versa → we need to address that

Thanks!

Pair creation in the CDC