Status of the accelerators

Danilo Rifuggiato

LNS User meeting December 2, 2014

Accelerator equipment for ion beam production

450 KV injector 2 sputtering sources

Superconducting ECR source SERSE Normal conducting ECR source CAESAR

Improvements on ECR sources: cryogenics of Serse and new injection system of Caesar

Limited availability of SERSE due to cryogenic problems

Autonomous system based on Helium recondensation

- Dimensioned and designed cost defined to be around 300 k€: project LNS Nuclear Astrophysics
- Realization : a) purchase of cryocoolers done 128 k€b) assembling of cryocoolers and high T_c current leads → middle of 2015

New beams with CAESAR new injection system

- metallic species through the installation of an oven
- new control system implemented

Tandem upgrade : a new Accelerator Tube n. 1

Tube n. 1 damaged : high residual pressure in the Low Energy section due to vacuum losses

Order to VIVIRAD, France, dated December 20th 2013: 237.000,00 € for 2 accelerator tubes - Delivered in May 2014

Replacement from the L.E. side

Dedicated system manufactured to remove the old tube and assemble the new one

July 9 2014 – The new tube positioned inside the Tandem

Tests are being carried out

Tandem upgrade: Belt -> Pelletron conversion

Charging system

HVEC does not produce belts any longer. The insulating material of belts different from the original ones does not resist to temperature and discharges. Belts must have good mechanical and electrical characteristics - No company is available to improve them

Alternative to the belt : Pelletron by NEC

Order to National Electrostatic Corporation (NEC, USA) issued in July 2013: 598.845 US\$ - Shipment on January 6, 2015 - Installation on January 19, 2015 (if the present tests end positively by Dec 5) Time needed : 2-3 weeks

From the belt

to the Pelletron

Superconducting Cyclotron: Helium liquefier revamping

- January 1st 2013 Breakdown of the helium liquefier: turbine found broken due to impurities (Air Liquide diagnosis) – restart on January 15 - Cyclotron operating on January 25
- May 2nd 2013 a new failure! Air Liquide inspection: again problems at the turbine extraordinary maintenance and upgrade (revamping) needed to restore the reliability grade of the past 20 years

- July 8th 2013 Economical offer for the revamping operation produced by Air Liquide after a heavy interaction Estimated time: 6 months from the order
- July 20th 2013 Contract approved by the INFN Executive Board performance bond and declarations requested to Air Liquide
- October 8th 2013 Air Liquide documents ready
- October 15th 2013 order issued

Helium liquefier revamping

3 Planning documents received from Air Liquide since the order issue (October 15)

1) : end of revamping in March 2014 turbines not repaired, software not ready

2) : end of revamping in May 2014 software malfunctioning

3) : end of revamping in July 2014 problems of vacuum tightness in the turbine

> LNS was kept open in August The Cyclotron cryostat was full of LHe on September 23

Proton beam extracted on October 2

Beam delivery

Superconducting Cyclotron

The experimental activity re-started in October 2014 after the liquefier revamping. The program October-December 2014 is being carried out. The program January-April 2015 is close to be published

In June 2013 beam time was assigned for 1 year. Therefore there are approved experiments until the end of 2015 at least (390 BTU)

Few months before the end of 2015, a new call for proposals will be sent

Beam delivery

Superconducting Cyclotron

The experimental activity re-started in October 2014 after the liquefier revamping. The program October-December 2014 is being carried out. The program January-April 2015 is close to be published

In June 2013 beam time was assigned for 1 year. Therefore there are approved experiments until the end of 2015 at least (390 BTU)

Few months before the end of 2015, a new call for proposals will be sent

Tandem

After the replacement of Tube n.1, tests are in progress in view of the Pelletron conversion, that will be accomplished in January 2015, as scheduled.

After the Pelletron installation, the approved experiments left (85 BTU) will be performed and a call for proposals will be sent

The LNS Superconducting Cyclotron

Bending limit Focusing limit Pole radius Yoke outer radius Yoke full height Min-Max field Sectors RF range

K=800 Kfoc=200 90 cm 190.3 cm 286 cm 2.2-4.8 T 3 15-48 MHz $(T/A)_{max} = K_{bending} (Q/A)^2 \sim 25 \text{ AMeV Au36+}$ $(T/A)_{max} = K_{focusing} (Q/A) 100 \text{ AMeV fully stripped}$

Versatility (performance)

Reliability (protontherapy)

High intensity (radioactive beams)

Superconducting Cyclotron developed beams

<mark>▲</mark> 4He 80 AMeV

¹¹²Sn 43.5 AMeV

In red beams with intensity 10¹² pps

AX	E (AMeV)
$\mathbf{H_{2}^{+}}$	62,80
H_3^{+}	30,35,45
$^{2}\mathbf{D}^{+}$	35,62,80
⁴ He	25,62,80
He-H	10, 21
⁹ Be	45
¹¹ B	55
¹² C	23,62,80
¹³ C	45,55
^{14}N	62,80
¹⁶ O	21,25,55,62,80
¹⁸ O	15,55
¹⁹ F	35,40,50
²⁰ Ne	20,40,45,62
^{24}Mg	50
²⁷ Al	40
³⁶ Ar	16,38
⁴⁰ Ar	15,20,40
⁴⁰ Ca	10,25,40,45
^{42,48} Ca	10,45
⁵⁸ Ni	16,23,25,30,35,40,45
^{62,64} Ni	25,35
^{68,70} Zn	40
⁷⁴ Ge	40
^{78,86} Kr	10
⁸⁴ Kr	10,15,20,25
⁹³ Nb	15,17,23,30,38
¹⁰⁷ Ag	40
¹¹² Sn	15.5,35,43.5
¹¹⁶ Sn	23,30,38
¹²⁴ Sn	15,25,30,35
¹²⁹ Xe	20,21,23,35
¹⁹⁷ Au	10,15,20,21,23
²⁰⁸ Pb	10

Upgrade of the Cyclotron: beam intensity

Axial injection allows for intensity enhancement

2000 – Stand alone

Compactness makes extraction a critical process : *ε*≈ 50%

Inter-turn separation $\Delta R = R \cdot (\Delta E/E) \cdot (1/v_r^2) \cdot \gamma/(\gamma+1)$

Increasing the Cyclotron beam intensity

¹³C⁴⁺ @ 45 AMeV (EXCYT primary beam) Pextr = 150 watt I=1020 enA= 1.5x10¹² pps Septum: directly cooled New septum material: W vs. Ta Bigger thickness: 0.3 vs. 0.15 mm ⇒extraction efficiency 63% vs. 50%

Thesource-cyclotronmatchingneedstoimproved

Beam transport along the injection line is now being considered, following the MSU, JYFL, KVI methods

Physics case demanding high intensity: double β decay

$$1/T_{\frac{1}{2}}^{0\nu}(0^{+} \to 0^{+}) = G_{01} \left[M^{\beta\beta 0\nu} \right]^{2} \left| \frac{\langle m_{\nu} \rangle}{m_{e}} \right|^{2}$$

A lot of new physics inside $\langle m_{\nu} \rangle = \sum_{i} |U_{ei}|^2 m_i e^{i\alpha_i}$

but one should know Nuclear Matrix Element (NME)

$$\longrightarrow \left| M_{\varepsilon}^{\beta\beta 0\nu} \right|^{2} = \left| \left\langle 0_{f} \left\| \hat{O}_{\varepsilon}^{\beta\beta 0\nu} \right\| 0_{i} \right\rangle \right|^{2}$$

Physics case demanding high intensity: double β decay

- Large angular acceptance
- Possibility of measuring at 0°
- Possibility of detection of ¹⁶O, ¹⁸F, ¹⁸Ne, ²⁰Ne
- High resolution spectra
- Angular distributions up to10 nb/sr

Double charge exchange reactions (¹⁸O,¹⁸Ne) and (²⁰Ne,²⁰O) towards the determination of the nuclear matrix element of the double β decay

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar – exp. DOCET nov.2012

Extraction by stripping: high efficiency

Extraction trajectory Ne20, q=6+ \rightarrow 10+ E=29 MeV/amu

Extraction by stripping is based on the reduction of magnetic rigidity of the accelerated ion, caused by an increase of charge state or decrease of mass, after crossing a thin carbon foil (stripper).

For light ions at high energies the charge state fraction for q=Z after a stripper with thickness bigger than the equilibrium thickness is >99%

Extraction by stripping: high efficiency >99%

Atomic Data and Nuclear Data Tables, Vol. 51, No. 2, July 1992, Table 2 pag.187

Carbon:	E=15 MeV/u	F(4)=1.74e-7	F(5)=8.35e-4	F(6)=0.99917
	E=20 MeV/u	F(4)=2.56e-8	F(5)=3.20e-4	F(6)=0.99968
Oxygen:	E=15 MeV/u	F(6)=2.48e-6	F(7)=3.14e-3	F(8)=0.9969
	E=20 MeV/u	F(6)=4.18e-7	F(7)=1.29e-3	F(8)=0.9987
	E=30 MeV/u	F(6)=3.50e-8	F(7)=3.74e-4	F(8)=0.99963
Neon:	E=15 MeV/u	F(8)=2.00e-5	F(9)=8.90e-3	F(10)=0.9911
	E=20 MeV/u	F(8)=2.66e-6	F(9)=3.26e-3	F(10)=0.9967
	E=30 MeV/u	F(8)=2.26e-7	F(9)=9.51e-4	F(10)=0.9991

lon	Energy	lsource	lacc	lextr	lextr	Pextr
	MeV/u	еμА	еμА	еμА	pps	watt
¹² C q=4+	30	300	45(4+)	66.8(6+)	6.9•10 ¹³	4009
¹⁸ O q=6+	60	150	22.5 (6+)	30 (8+)	2.3•10 ¹³	4050
²⁰ Ne q=4+	20	500	75(4+)	185.6(10+)	1.1•10 ¹⁴	5569

Beam dynamics in extraction by stripping

D* CS

Beam dynamics calculations are necessary to ascertain the feasibility of extraction by stripping. In particular the beam envelope has to be evaluated

Design of magnetic channels for beam focusing

From electrostatic extraction to extraction by stripping

A new cryostat

Conceptual design study accomplished in collaboration with MIT. Report delivered on Oct. 31

Agreement with MIT

Statement of Work

for

Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN)

Title: Conceptual Design of a Superconducting Magnet for the LNS Cyclotron

Tasks

- Magnetic design deviation from the present form factors of the alpha and beta coils
- Conceptual design
 - NbTi cable ans superconducting coils Cryostat Structural analysis Cryogenic consumption
- Preliminary schedule and cost estimate for design and manufacturing

Study of a new superconducting magnet

Study of a new superconducting magnet

16/Sep/2014 17:59:08

opera

The whole upgrade

Looking for intensity

- <u>New s.c. magnet: cryostat with coils</u>
- <u>Stripper system</u>
- <u>Magnetic channels</u>
- <u>New liner</u>
- Source-Cyclotron matching
- Cyclotron-Magnex beam line

Looking for reliability

- New trim coils
- RF cavities insulators
- New power supplies
- New Helium liquefier

Roughly estimated cost				
Superconducting magnet	5.4 M€			
"Intensity" equipment	2.2 M€			
"Reliability" equipment	4.5 M€			
Total	12.1 M€			

Estimated time

	Start	End
Cryostat design study	09/2014	06/2015
Equipment construction	10/2015	12/2017
Dismantling	07/2017	12/2017
Assembling	01/2018	12/2018
Commissioning	01/2019	04/2019

FRIBS@LNS: in Flight Radioactive Ion BeamS

Beams developed at FRIBS@LNS

		intensity
primary beam	beam	(kHz/100W)
18O 55 AMeV	16C	120
setting 11Be	17C	12
	13B	80
	11Be	20
	10Be	60
	8Li	20
18O 55 AMeV	14B	3
setting 12Be	12Be	5
	9Li	6
	6He	12
13C 55 AMeV	11Be	50
setting 11Be	12B	100
36Ar 42 AMeV	37K	100
setting 34Ar	35Ar	70
	36Ar	100
	37Ar	25
	33CI	10
	34CI	50
	35CI	50
20Ne 35 AMeV	18Ne	50
setting ne18	17F	20
	21Na	100
70Zn 40 AMeV		
setting 68Ni	68Ni	20

Beams to be delivered in 2014-2015 to approved experiments

¹⁶C (CHIMERA)

⁶⁸Ni (CHIMERA)

⁸He (CHIMERA) new

¹⁴Be (test experiment) new

³⁸S (MAGNEX) new

Thank you