Probing deformed commutators with macroscopic harmonic oscillators

Francesco Marin

Università degli Studi di Firenze

Phenomenological quantum gravity

General 'remark': one cannot determine a position with an accuracy better

than the Planck length $L_P = \sqrt{hG/c^3} = 1.6 \ 10^{-35} \ m$

- Generalized Heisenberg uncertainty relations (GUP)
- Generalized commutators between p e q
- Modified quantum physics

Detecting signatures of Planck scale-physics in highly-sensitive metrological systems

Outline

- Test of GUP and localization in a large mass oscillator
- Test of modified dynamics in mechanical oscillators

GUP and harmonic oscillator ground state

$$\Delta x \Delta p \ge \frac{\hbar}{2} \left(1 + \beta_0 \left(\frac{\Delta p}{M_p c} \right)^2 \right)$$

$$x = \sqrt{\frac{\hbar}{m\omega_0}} X$$

$$p = \sqrt{\hbar m\omega_0} P$$

$$AX \Delta P \ge \frac{1}{2} \left(1 + \beta \left(\Delta P\right)^2\right)$$

$$\beta = \beta_0 \frac{\hbar m\omega_0}{M_p^2 c^2}$$

GUP and harmonic oscillator ground state

$$H = \frac{\hbar\omega_0}{2} \left(X^2 + P^2 \right)$$
$$\Delta X \Delta P \ge \frac{1}{2} \left(1 + \beta \left(\Delta P \right)^2 \right)$$
$$\beta = \beta_0 \, \frac{\hbar m \omega_0}{M_p^2 c^2}$$

$$< X > = < P > = 0$$

$$E > \frac{\hbar\omega_0}{2} \left[\left(1 + \frac{\beta^2}{4} \right) (\Delta P)^2 + \frac{1}{4(\Delta P)^2} + \frac{\beta}{2} \right]$$
$$E_{min} = \frac{\hbar\omega_0}{2} \left[\sqrt{1 + \frac{\beta^2}{4}} + \frac{\beta}{2} \right] \simeq \frac{\hbar\omega_0}{2} \beta$$

The AURIGA GW detector

Sh Run 1486 : Averages : 150/160 dt(sec) 4294 [1.43e-22] @ Time : 2011-06-24 08:57:25 UTC Fr

➢ 3m long
➢ Al5056
➢ 2200 kg
➢ 4.5 K

Cooling down to the ground state

$$n_T = \frac{kT}{\hbar\omega_0}$$

$$(\omega_0 = 1 \text{ GHz} \longrightarrow T \approx 50 \text{ mK})$$

Active or passive feedback cooling of one (few) oscillator mode

Cooling down to the ground state

$$n_T = \frac{kT}{\hbar\omega_0}$$

$$(\omega_0 = 1 \text{ GHz} \longrightarrow T \approx 50 \text{ mK})$$

Active or passive feedback cooling of one (few) oscillator mode

$$M\left(-\omega^{2}+\omega_{0}^{2}-i\frac{\omega\omega_{0}}{Q}\right)\tilde{x}=\tilde{F}+G\tilde{x}$$

$$M\left(-\omega^{2}+\omega_{eff}^{2}-i\frac{\omega\omega_{0}}{Q_{eff}}\right)\tilde{x}=\tilde{F}$$

$$Cold \ damping$$

$$\omega_{eff}^{2}=\omega_{0}^{2}-\frac{Re\ G}{M}$$

$$\left(\frac{1}{Q_{eff}}=\frac{1}{Q}+\frac{Im\ G}{M\omega\omega_{0}}\right)$$

$$\int S_{x}^{th}=\frac{kT_{eff}}{M\omega_{0}^{2}}\implies T_{eff}=T\frac{Q_{eff}}{Q}$$

$$Cooling$$

YES

Displacement sensitivity improvement

Prepare oscillator in its fundamental state

1x10⁻²⁴

Frequency (Hz)

T_{eff}=0.17 mK

Effective mass vs reduced mass

Readout measures the axial displacement of a bar face corresponding to the first longitudinal mode

$$M_{eff} = M/2$$

 M_{eff} depends on the modal shape and interrogation point of the readout (e.g. $M_{eff} \rightarrow \infty$ if the measurement is performed on a node of the vibration mode)

Really moving mass

1) Modal motion implies an oscillation of each half-bar center-of-mass, to which is associated a *reduced mass M/2*

2) The energy associated to the oscillation of the couple of c.m.'s, having a reduced mass $M_{red} = M/2$ is about 80% of that of the modal motion

AURIGA minimal energy

Modified commutators I

GUP can be associated to a deformed canonical commutator

$$[x,p] = i\hbar \left(1 + \beta_0 \left(\frac{p}{M_p c}\right)^2\right)$$

Planck scale modifications of the energy spectrum of quantum systems

Lamb shift in hydrogen atoms

1S-2S level energy difference in hydrogen

Lack of observed deviations from theory at the electroweak scale

Modified commutators II

Modifications of commutators are not unique Experiments could distinguish between the various approaches

$$[x,p] = i\hbar \sqrt{1 + 2\mu_0 \frac{(p/c)^2 + m^2}{M_p^2}}$$

M. Maggiore Phys. Lett. B 319, 83-86 (1993)

4

$$[x, p] = i\tilde{\hbar}$$

$$\tilde{\hbar} \simeq \hbar \sqrt{1 + 2\mu_0 M^2 / M_p^2}$$

$$E_{min} = \frac{1}{2}\tilde{\hbar}\omega_0 < E_{exp} = 1.3 \times 10^{-26} \text{ J}$$

$$\mu_0 < 4 \times 10^{-13}$$

F. Marin *et al.*, New J. Phys. **16**, 085012 (20)

Spacetime granularity (Quantum Foam)

Property of the spacetime geometry and not of physical objects (Soccer ball problem ?)

Apparatus independent (not based on a specific QG model)

AURIGA: re-interpretation

AURIGA is not the "coolest" oscillator, but is the most motionless

F. Marin et al., New J. Phys. 16, 085012 (2014)

Outline

- Test of GUP and localization in a large mass oscillator
- Test of modified dynamics in mechanical oscillators

Basic assumptions:

$$\frac{\mathrm{d}\hat{O}}{\mathrm{d}t} = \frac{1}{i\hbar}[\hat{O}, H]$$
$$[x, p] = i\hbar \left(1 + \beta_0 \left(\frac{p}{M_p c}\right)^2\right)$$

Heisenberg dynamics

Deformed commutation relations

$$x = \sqrt{\frac{\hbar}{m\omega_0}} X$$

$$p = \sqrt{\hbar m\omega_0} P$$

$$\beta = \beta_0 \frac{\hbar m\omega_0}{M_p^2 c^2}$$

$$P = \left(1 + \frac{1}{3}\beta \tilde{P}^2\right) \tilde{P}$$

$$H = \frac{\hbar \omega_0}{2} \left(X^2 + \tilde{P}^2\right) + \frac{\hbar \omega_0}{3}\beta \tilde{P}^4$$

See, e.g., C. Quesne and V.M. Tkachuk, Phys. Rev. A 81, 012106 (2010)

$$\begin{split} \dot{X} &= \omega_0 \tilde{P} \left(1 + \frac{4}{3} \beta \tilde{P}^2 \right) & \longrightarrow \quad \ddot{P} + \omega_0^2 \tilde{P} + \frac{4}{3} \beta \omega_0^2 \tilde{P}^3 = 0 \\ \dot{P} &= -\omega_0 X \\ & & & \\ \hline Poincaré solution for \tilde{P}, then find X \\ & & \\ \hline X &= X_0 \left[\sin(\tilde{\omega}t) + \frac{\beta}{8} X_0^2 \sin(3 \tilde{\omega}t) \right] \\ & & \\ \tilde{\omega} &= \left(1 + \frac{\beta}{2} X_0^2 \right) \omega_0 \\ & & \\ Freq. shift \\ First order in \beta X_0^2) \end{split}$$

> Test on a wide mass range

- \succ High mechanical quality factor \rightarrow 'isolated' oscillators
- Exploit the slow decay to obtain frequency/3° harmonic vs amplitude curves

1° oscillator: $m \approx 1 g$

2° oscillator: $m \approx 100 \ \mu g$

T = 4.3 K

Michelson interferometer

3° oscillator: $m \approx 100 \text{ ng}$

SiN membrane $0.5 \times 0.5 \text{ mm}^2 \times 50 \text{ nm}$ mass = 135 ng Q = 23000

'Model-independent' limits

Mass	Frequency	Max. ampl.	Max. Q_0	Max. $\Delta \omega / \omega_0$
(kg)	(Hz)	(nm)		
 3.3×10^{-5}	5.64×10^3	600	6×10^{10}	4×10^{-7}
2×10^{-8}	1.42×10^{5}	55	7×10^{8}	6×10^{-8}
2×10^{-11}	7.47×10^{5}	7.5	7×10^{6}	4×10^{-8}

NB: stiffening in clamped-free microcantilevers has been observed in AFM tips. Hardening geometric nonlinearity

$$X = X_0 \left[\sin(\tilde{\omega}t) + \frac{\beta}{8} X_0^2 \sin(3 \,\tilde{\omega}t) \right]$$

Mass (kg)	Frequency (Hz)	β	eta_0	indicator
3.3×10^{-5}	5.64×10^{3}	7×10^{-29}	3×10^{7}	$\Delta \omega$
"	"	7×10^{-25}	2×10^{11}	3 rd harmonic
7.7×10^{-8}	1.29×10^{5}	8×10^{-24}	5×10^{13}	$\Delta \omega$
"	"	2×10^{-19}	2×10^{18}	3 rd harmonic
2×10^{-8}	1.42×10^{5}	3×10^{-25}	6×10^{12}	$\Delta \omega$
2×10^{-11}	7.47×10^{5}	4×10^{-21}	2×10^{19}	$\Delta \omega$
"	"	2×10^{-14}	1×10^{26}	3 rd harmonic

$$eta = eta_0 \, rac{\hbar m \omega_0}{M_p^2 c^2}$$

M. Bavaj. et al., arXiv: 1411.6410

Perspectives

The link between these models and an underlying fundamental theory of quantum gravity is unclear

The description of macroscopic objects in the framework of quantum gravity models is still lacking

A macroscopic mechanical oscillator really behaves as quantum oscillator (recent experimental verification in cooled micro-oscillators)

Macroscopic oscillators in their quantum ground state

LETTER

doi:10.1038/nature10461

Laser cooling of a nanomechanical oscillator into its quantum ground state

Jasper Chan¹, T. P. Mayer Alegre¹[†], Amir H. Safavi-Naeini¹, Jeff T. Hill¹, Alex Krause¹, Simon Gröblacher^{1,2}, Markus Aspelmeyer² & Oskar Painter¹

Perspectives

The link between these models and an underlying fundamental theory of quantum gravity is unclear

The description of macroscopic objects in the framework of quantum gravity models is still lacking

A macroscopic mechanical oscillator really behaves as quantum oscillator (recent experimental verification in cooled micro-oscillators)

Quantum gravity effects could be linked to 'really quantum' properties, i.e., to quantum coherence

Test on oscillators cooled down to the ground state

Francesco Marin^{1,2,3}*, Francesco Marino^{3,4}, Michele Bonaldi^{5,6}, Massimo Cerdonio⁷, Livia Conti⁷, Paolo Falferi^{6,8}, Renato Mezzena^{6,9}, Antonello Ortolan¹⁰, Giovanni A. Prodi^{6,9}, Luca Taffarello⁷, Gabriele Vedovato⁷, Andrea Vinante^{8,11} and Jean-Pierre Zendri⁷

Heisenberg Uncertainty Measured with Opto-mechanical Resonators

Mateusz Bawaj^{1,2}, Ciro Biancofiore^{1,2}, Michele Bonaldi^{3,4}, Federica Bonfigli^{1,2}, Antonio Borrielli^{3,4}, Giovanni Di Giuseppe^{1,2}, Lorenzo Marconi⁵, Francesco Marino^{6,7}, Riccardo Natali^{1,2}, Antonio Pontin^{5,6}, Giovanni A. Prodi^{4,8}, Enrico Serra^{4,9,10}, David Vitali^{1,2}, Francesco Marin^{5,6,11,*}

Università degli Studi di Firenze

UNIVERSITÀ DEGLI STUDI DI TRENTO