

The SPES layout, construction and commissioning strategy

A. Pisent, L. Bellan, M. Comunian, INFN-LNL, Legnaro, Italy B. Chalykh, ITEP, Moscow, Russia A. Russo, L. Calabretta, INFN-LNS, Catania, Italy

Thanks to SPES Team: G. Prete, G. Bisoffi, E. Fagotti, P. Favaron, A. Andrighetto, A. Pisent, M. Comunian, A. Palmieri, A. Porcellato, D. Zafiropoulos, L. Sarchiapone, J. Esposito, C. Roncolato, L. Ferrari, M. Rossignoli, M. Calderolla, M. Poggi, M. Manzolaro, J. Vasquez, M. Monetti, L. Calabretta, A. Russo, M. Guerzoni

SPES, acronym of *Selective Production of Exotic Species*, is a CW radioactive ion beam facility under construction at LNL INFN in Italy.

- Functional elements of SPES post-acceleration
- The lay out.
 - New transfer line to experiment operational
 - Transport line from CB to ALPI → main elements under procurement.
 - The new RFQ as new ALPI LINAC injector (mechanical design going on).
- Transport line 1+ design to be frozen soon:
 - Low energy transport and selection;
 - RFQ cooler
 - High Resolution Mass Spectrometer;
- ALPI LINAC for SPES.
- Installation and beam commissioning sequence for the post accelerator.

Computational approach

- The post acceleration of SPES requires extremely good magnetic selection, high transmission (precious beam) and very good knwoledge of the position, of amount and location of beam losses
- The approach, computational tools (TRACEWIN, 10⁵ macroparticles, accurate field maps..) are almost the same as for high intensity linacs (IFMIF or ESS)
- 3° order matrix transport for separators optimization (GIOS).
- 3D field simulations with COMSOL and OPERA 3D for field map calculation.
- Sistematic error studies with massive computing parallelization....

The ISOL choice for SPES

Cyclotron → Proton Driver: 70MeV 0.75 mA 2 exit ports

NEW CONCEPT direct target Multi-foil UCx designed to reach 10¹³ f/s 0.2 mA 40 MeV

Define a costeffective facility in the order of **50 M€**

exotic beams for scien

ALPI tunnel

 The use of the continuous beam from the +1 source (LIS, PIS, SIS) maximizes the RNB efficiency but need a CW post accelerator (RFQ and ALPI); this layout also needs a charge breeder chosen to be an ECR that woks in continuous.

INFN

٠

di Fisica Nuclea

The energy on the transfer lines are determined by the chosen RFQ input energy (w_{RFQ}=5.7 keV/u); namely, all the devices where the beam is approximately stopped (production target, charge breeder and RFQ cooler) lay at a voltage:

$$eV = (A / q) w_{RFQ}$$

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).
- 2. after that with an RFQ cooler the beam energy spread and transverse emittance are reduced both for further separation and to cope with the charge breeder acceptance (about 5 eV).

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).
- 2. after that with an RFQ cooler the beam energy spread and transverse emittance are reduced both for further separation and to cope with the charge breeder acceptance (about 5 eV).
- 3. HRMS and MRMS (high and medium resolution mass spectrometers, R=1/40000 and R=1/1000 respectively) are used to select the RNB (with good transmission) and to suppress the contaminants from the charge breeder source.

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).
- 2. after that with an RFQ cooler the beam energy spread and transverse emittance are reduced both for further separation and to cope with the charge breeder acceptance (about 5 eV).
- 3. HRMS and MRMS (high and medium resolution mass spectrometers, R=1/40000 and R=1/1000 respectively) are used to select the RNB (with good transmission) and to suppress the contaminants from the charge breeder source.
- Both the HRMS and the MRMS are installed on a negative voltage platform, to decrease the beam geometrical emittance, the relative energy spread and to keep the dipole field in a manageable range (>0.1 T).

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).
- 2. after that with an RFQ cooler the beam energy spread and transverse emittance are reduced both for further separation and to cope with the charge breeder acceptance (about 5 eV).
- 3. HRMS and MRMS (high and medium resolution mass spectrometers, R=1/40000 and R=1/1000 respectively) are used to select the RNB (with good transmission) and to suppress the contaminants from the charge breeder source.
- Both the HRMS and the MRMS are installed on a negative voltage platform, to decrease the beam geometrical emittance, the relative energy spread and to keep the dipole field in a manageable range (>0.1 T).
- 5. The 7 m long RFQ has an internal bunching and relatively high output energy; this easies the setting and allows 90% transmission into ALPI longitudinal acceptance (constraint deriving from quite long ALPI period, 4 m).

- The beam preparation scheme satisfies various requirements:
- the zone with worst radiation protection issues is reduced by means of the first isobar selection (resolution R=1/200).
- 2. after that with an RFQ cooler the beam energy spread and transverse emittance are reduced both for further separation and to cope with the charge breeder acceptance (about 5 eV).
- HRMS and MRMS (high and medium resolution mass spectrometers, R=1/40000 and R=1/1000 respectively) are used to select the RNB (with good transmission) and to suppress the contaminants from the charge breeder source.
- Both the HRMS and the MRMS are installed on a negative voltage platform, to decrease the beam geometrical emittance, the relative energy spread and to keep the dipole field in a manageable range (>0.1 T).
- 5. The 7 m long RFQ has an internal bunching and relatively high output energy; this easies the setting and allows 90% transmission into ALPI longitudinal acceptance (constraint deriving from quite long ALPI period, 4 m).
- An external 5 MHz buncher before the RFQ will be available for specific experiments (at the price of about 50% beam transmission).
- 7. The dispersion function is carefully managed in the various transport lines; where possible the transport is achromatic, otherwise the dispersion is kept low (in particular at RFQ input D=0, D' is about 50 rad).

INFN

Istituto Nazionale di Fisica Nucleare

Key technologies and choices

- Vacuum (long lines <10-8 mbar), reliable control of residual gasses.
- Brazing (RFQ, bunchers....)
- Optics elements:

- Electrostatic quads when possible (but we have to rescale with A/q)
- Magnetic dipoles for momentum analysis and dispersion control
- Magnetic lenses (solenoids and quads) for the line MMRMS RFQ with possible energy upgrade (low energy high charge state)
- Beam instrumentation for pilot beam, for low intensity (10-4 pps) and few tape station for species characterization

NEWS OF 1+ LINES

SPES Layout: zoom on new building

- Usage of short electrostatic triplets (for little areas)
- 1/200 via D1 dipole.
 Isotopes from isobars separation
- HRMS to CB
- Wien Filter as a pre-mass separator.
- Usage of dipoles for bending magnets in order to control the dispersion.

Input used for 1+ Beam:

• Mass 132 A 1+

di Fisica Nucle

- Voltage 40 kV
- RMS norm. Emittance 0.007 mmmrad Geom=8.6 mmmrad, Geom 99%=70 mmmrad, ΔE =±20 eV. Brho=0.331 Tm
- CEA TraceWin code
- Fields Maps for long Electrostatic quads and Wien Filter. Short triplets with hard edges.

Input used for 1+ Beam:

- Mass 132 A 1+
- Voltage 40 kV
- RMS norm. Emittance 0.007 mmmrad Geom=8.6 mmmrad, Geom 99%=70 mmmrad, ΔE =±20 eV. Brho=0.331 Tm
- CEA TraceWin code
- Fields Maps for long Electrostatic quads and Wien Filter. Short triplets with hard edges.

300 200

100

-100

-200

-300

-100

-300

X (mm)

HRMS physics design

preliminary analysis (LNS-LNL) Input parameters: Energy= 260 KeV $\Delta \theta$ =4 mrad ΔE = ± 5 eV Emittance99%=5.7 π mm mrad Linear Design Mass resolution: 1/60000 (eng. design: 1/25000)

Ispired to CARIBU-HRMS, ANL (USA)

± 750 V to correct

± 5 V platform ripple

SPES RFQ Beam Cooler parameters

Mass Range	9-200 amu
Transv. Emitt. Injected beam (norm rms)	0.007 π. mm.mrad
Emittance Reduction factor	10 (max)
Buffer gas	He @ 300 K
Beam Intensity	50-100 nA → x10 ¹¹ pps
Energy spread of extracted beam	≈1eV
RF Voltage range	0.5 - 2.5 kV (1 kV at q (Mathieu)*=0.25)
RF Frequency range	1 -30 MHz (3.5 – 15 MHz at q^{*} =0.25)
RFQ gap radius (r _o)	4 mm
RFQ Length	700 mm
Pressure Buffer Gas (He) range	0.1 – 2.5 Pa
Average energy during the cooling	<10 eV

(*) max transmission efficiency (~80%)

M. Maggiore

SPES RFQ Beam Cooler parameters

-	SPES /
exotic beams	for science

Mass Range	9-200 amu
Transv. Emitt. Injected beam (norm rms)	0.007 π. mm.mrad
Emittance Reduction factor	10 (max)
Buffer gas	Не @ 300 К
Beam Intensity	50-100 nA \rightarrow x10 ¹¹ pps
Energy spread of extracted beam	≈1eV
RF Voltage range	0.5 - 2.5 kV (1 kV at q (Mathieu)*=0.25)
RF Frequency range	1 -30 MHz (3.5 – 15 MHz at q*=0.25)
RFQ gap radius (r _o)	4 mm
RFQ Length	700 mm
Pressure Buffer Gas (He) range	0.1 – 2.5 Pa
Average energy during the cooling	<10 eV

(*) max transmission efficiency (~80%)

- Components are being finalized and next year (2015) all things should be carried out.
- Waiting for assignment of dedicated area (end of Dec 2014) for starting the assembly and testing of the whole equipment.
- Preliminary test of the RFQ device at Milan
 University (ELTRAP facility) expected for next year.

SPES Layout: zoom on 3° hall

SPES

SPES Layout: zoom on 3° hall

- CB based on ECR technique
- Developed by LPSC (LEA-COLLIGA coll.)
- Design 2013, construction 2014

<u>Features</u>: 3 coils for axial magnetic field; permanent magnet 6-pole for the radial field (1.2 T at injection, 0.42 T minimum and 0.82T at extraction). Microwaves at \sim <u>14.5 GHz</u> and a maximum power of <u>600 W</u>; operation at <u>18 GHz</u> also possible.

	Mass Range		ION	Q	Efficiency [%]	Year Data Source	(M/q)_min	(M/q)_max
		138	Хе	20+ (21+)	10,9 (6,2)	2012 (2005)	6.57	6.90
130	132	134	Sn	21+	6	2005	6.19	6.38
		98	Sr	14+	3.5	2005	7	7
		94	Kr	16+(18+)	12(8,5)	2013	5.22	5.88
90		99	Y	14+	3.3	2002	6.43	7.07
74		80	Zn	10+	2.8	2002	7.40	8.00
	81	82	Ga	11+	2	2002	7.36	7.45
90	91	92	Rb	17+	7.50	2013	5.29	5.41
		34	Ar	8+(9+)	16,2(11,5)	2012 (2013)	3.78	4.25

A. Galatà

Beam optics of MRMS

TraceWin - CEA/DSM/Irfu/SACM

 Dipoles

 R=750 mm

 $\Phi=90^0$

 Edge=33.35 °

 B=0.2 T

 Gap=± 35 mm

 R_{sex} =1474 and 828 mm

 Field homogeneity 10 -4

 (in ± 180 mm hor, ± 35 mm ver)

Electrostatic multipoles elements In the center (bore beam diameter=300 mm)

Beam Envelopes

In figure are reported 3 beams, with the same emittance, injected separated by **1/1000** in mass. After the MRMS the beams are fully separated in X. RMS Tr. Norm. Input Emittance 0.1 mmmrad.

Transport Line to SPES RFQ

INFN

tituto Naz

SPES

exotic beams for scien

Beam instrumentation

- Beam line to be built next: profiles (harps), slits, emittance, FC.
- Low intensity diagnostics (in the line and in ALPI).
- Gamma (tape system) characterization at specific locations after separators: LRMS, HRMS, MRMS.

			-	-	-				
			Faraday	profila	emittanc		X_max		monitor range
Comment	nome	slits	cup	tore	emeter	timing	[mm]	Y_max[mm]	X,Y mm
MMRMS object	Dn-1						9	9	±16
MMRMS image	Dn+0						13,3	14	±10
MMRMS emittance	Dn+1						18,8	41	±35
tape system spot	Dn+2						17,3	21	±23
nput ALPI line	Dn+3						33	23	±20
pre-buncher	Dn+4						36,2	30	±30
ore-solenoids	Dn+5						34,2	45,8	±35
ore-RFQ	Dn+6						66	51	±40
Per RFQ comm.	Diagnostic plate (temporary)						5,9	5,1	±10

Specs of the elements on CB-ALPI line

Parameter (units)	Design Value
Operational mode	CW
Frequency (MHz)	80.00
Injection Energy (keV/u)	5.7 (β=0.0035)
Output Energy (keV/u)	727 (β=0.0395)
RF power dissipation (kW)	100

SPES RFQ

Figure 1: The main RFQ parameters vs. length.

Table 2: RFQ design parameters

	,
Parameter (units)	Design
Inter-vane voltage V (kV, A/q=7)	63.8 - 85.84
Vane length L (m)	6.95
Average radius R_0 (mm)	5.33 - 6.788
Vane radius ρ to average radius ratio	0.76
Modulation factor m	1.0 - 3.18
Min small aperture a (mm)	2.45
Total number of cells	321
Synchronous phase (deg.)	-9020
Focusing strength B	4.7 – 4
Peak field (Kilpatrick units)	1.74
Transmission (%)	95
Input Tr. RMS emittance (mmmrad)	0.1
Output Long. RMS emittance	0.055 / 0.15 /
(mmmrad) / (keVns/u)/(keVdeg/u)	4.35

RFQ Mechanical concept

Bolted electrodes, copper plated 304L tank, metallic circular joints, brazing of electrodes and other components before assembly **Tank length 1200 mm, inner radius 375 mm, 40 mm thickness**

Electrode assembly concept

IFMIF coupler tested to 200 kW 175 MHz cw

same coupler will be used 100 kW 80MHz $S_{12} = -0.34 \text{ dB} (7.6\%)$ insertion loss) (with dummy couplers) $S_{12} = -0.44 \text{ dB} (9.7\%)$ insertion loss)

Istituto Nazionale di Fisica Nucleare (Italy)

INFN

A.Pisent RFQ

BD from CB to end of RFQ

Without buncher: total losses 93-94 % after the RFQ, output longitudinal emittance 0.067 π mmmrad.

Transmission 45 % (chopping the satellite bunches) RFQ output emittance long rms 0.0371 πmmmrad

V. Andreev

Buncher study

Input beam at the RFQ $\pm 15 \text{ eV}$, ^ $\uparrow 132 \downarrow Sn \uparrow 19+$, 760 keV. Continuous

Beam Optics of Transport line from

CB via RFQ with static errors study

Quadrupoles errors	Sensibility required
Misalignment	0.1 mm
Tilt	0.15
Gradient error	0.3%
Dipoles gradient error	0.02%
Multipolar component	0.6%

Input beam error	Applied errors
Mismatch	10%
Kinetic energy offset	0.1‰
X'	10 mrad
Х	1 mm

With this set of Errors we get an average of 7.4% of losses out of RFQ

SPES Layout: zoom on ALPI LINAC

ALPI LINAC for SPES case A/q=7 132 Sn $^{19+}$

- Input energy from new RFQ: 93.9 MeV (β=0.0395) = 0.711 MeV/A.
- Output energy from CR21: 1285 MeV (β = 0.143) around 9.7 MeV/A.
- Input Transverse emittance of 0.12 mmmrad RMS norm. Long. 6.2 π deg*KeV/u
- Global transmission from CB to Experimental Hall: 0.93 (RFQ)*0.97(ALPI)=0.9=90%.
- Simulation software: Tracewin with full RF fields Maps for cavities.

ALPI Input Phase Space

ALPI Output Phase Space

Beam Optics from RFQ to Experimental Hall for A/q=7

Beam Optics from RFQ to Experimental Hall for A/q=7

ALPI long acceptance plot

Used Input Emittance long RMS=6.2 π degKeV/u RFQ output Emittance long RMS=4.5 π degKeV/u

Inside the cryostat

Inside the cryostat

ALPI long acceptance plot

RFQ output Emittance long RMS=4.5 π degKeV/u

ALPI error study (ongoing)

Beam commissioning sequence

- 1. Source +1 (surface); CB; MRMS (2016)
- 2. Off line (high energy building) RFQ cooler (2015-16)
- 3. Source +1 (plasma); RFQ cooler; CB; MRMS; RFQ input line (2017)
- 4. CB; MRMS; RFQ; bunchers; ALPI (2018-19)
- 5. Source +1 (SIS-ISOL); wien filter; low resolution separator (2017).
- 6. Source +1 (surface-bunker); wien filter; low resolution separator; RFQ cooler (2018).
- 7. 6.+HRMS+transport lines to low energy experiments. (2018)
- 8. 6.+HRMS+long transfer lines+CB (2019)
- 9. From production target to end of ALPI (2019)
- 10. First RIB trough ALPI to experiments (2019)

Conclusions

- SPES post accelerator beam design has involved the study of many critical devices, and the overall optimization to distribute the criticality.
- The beam transport lines from CB to ALPI are specified and we are tendering the magnets.
- The mechanical design of RFQ and HRMS will be completed during 2015; starting of procurement procedure will follow within 2015.

Beam characteristics and constrains

- Emittance from plasma source: 70 π mmmrad geom RMS @40 kV (¹³²Sn¹⁺), <u>+</u> 40eV (laser and surface are better)
- After RFQ cooler and with platform 6 π mm mrad geom 99%
 @ 220 kV (132Sn1+), +2 eV. Resolution required for the 1/20000.
- Input acceptance of CB <u>+</u>5 eV, output 0.1 π mm mrad norm, +- 30 eV.
- MRMS with geometrical acceptance of 340 π mm mrad.
- ALPI longitudinal acceptance (26 π degKeV/u) and RFQ output longitudinal rms emittance (4.3 π degKeV/u).