

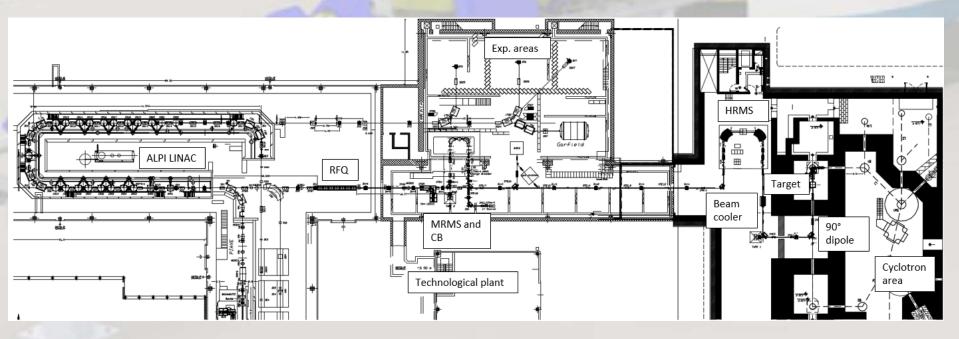
STATUS OF THE WORK PACKAGE #5 CYCLOTRON & LINES

DECEMBER 2014 TECHNICAL ADVISORY COMMITTEE

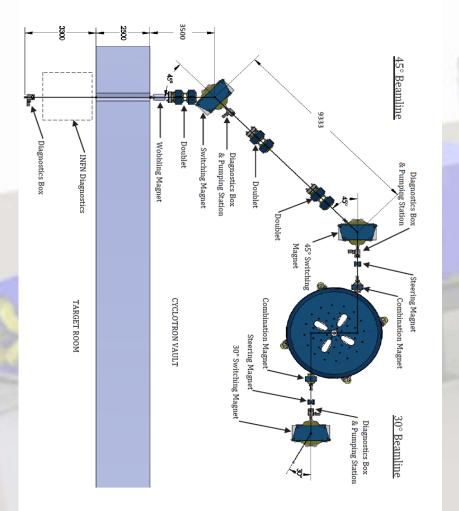
A. Lombardi

WORK PACKAGE # 5 THE CYCLOTRON AND THE BEAM LINE

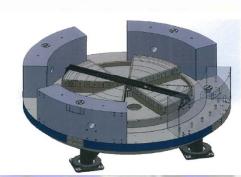
- INTRODUCTION
- •WORK DONE IN 2014
- •NEAR FUTURE PLANNING
- •SUMMARY



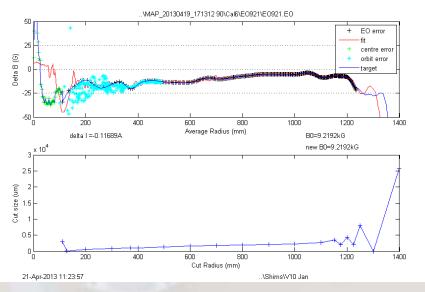
•MANDATE


Acquisition of a commercial proton accelerator.

- •Follow the realization and the delivery
- •Follow the installation, the commissioning and the acceptance test
- •Acquisition of the personnel for the running supervision



A proton driver based on a cyclotron with energy 40-50 MeV and current 0.2 mA fulfils the requirements for the SPES project as the direct target is actually designed for 8kW power. A driver with a capability of ≈50KW (70 MeV, 0.7 mA)



Laboratori Nazionali di Legnaro

Magnetic field measuring device

Within 20G before coil adjustment

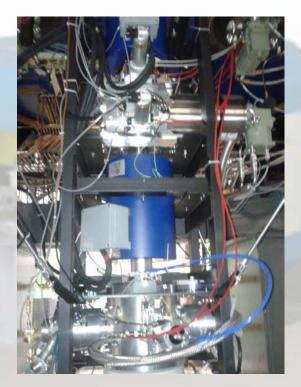
 Excellent agreement model to measurement

- Excellent predictability of changes
- Very low imperfection harmonics (<2 G)
- Shimming completed on May 2013

December 4-5 2014

A. Lombardi

Vancouver visit of May 2014

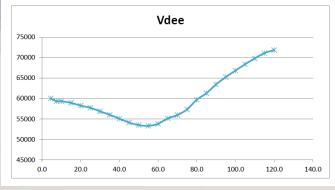

Acceptance Test for Ion Source:

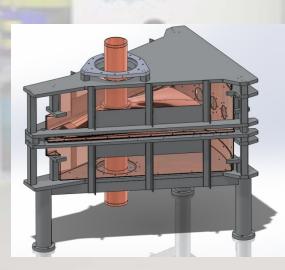
- 6 mA of H- have been extracted with good reliability
- Waiting for upgrade up to 10 mA
- Injection line was assembled and preliminary test of beam transmission was done

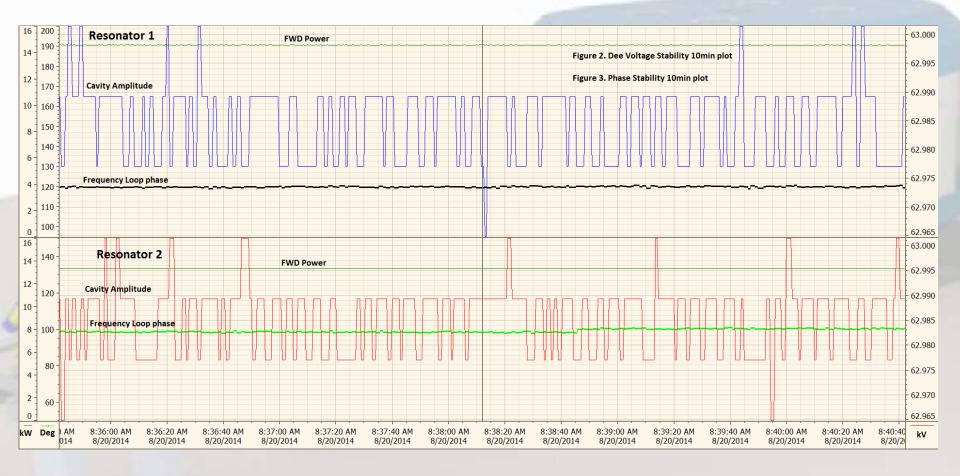
Ottawa visit of August 2014

 $f_{o} = 56.199600 MHz$ Resonator tuned at:

Input reflection coef: $S_{11} = -65 dB$ (average value -56dB)

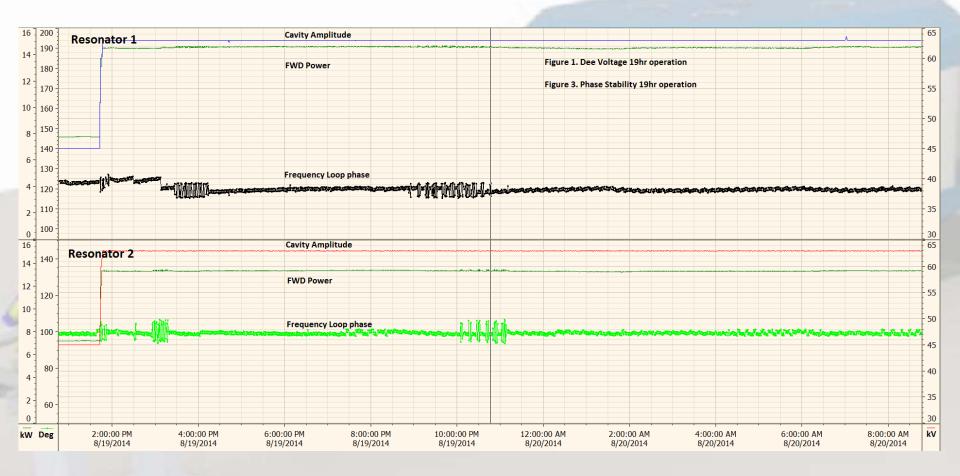

Quality factor loaded: $Q_l = 3156$ unloaded value expected to be approximate 6300.


The main magnet ready for the rf resonators


The D voltage distribution

$\Delta f_{coarse} = 30.8 kHz/mm$	161mm
$\Delta f_{fine} = 30.0 kHz/mm$	±10mm

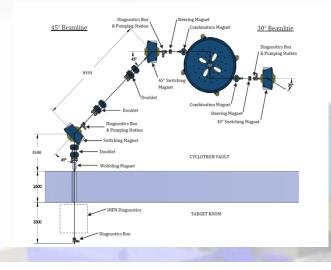
The first rf resonator successfully tested inside the test stand


Voltage Amplitude Stability

Stability within ± 2.5*10⁻⁵

A. Lombardi

Long Time Test Stability



Both cavities with 62 kV voltage and 14 kW FWD RF power each

Pressure Vacuum Tank Performance

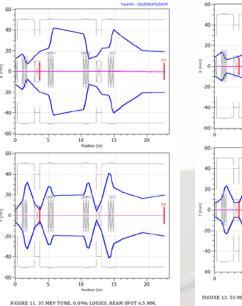


TABLE 1. TRACEWIN STARTING BEAM CONDITIONS (AT THE COMBO MAGNET ENTRY FACE)

Parameter	35 MeV	50 MeV	70MeV
Horiz. RMS Emittance (π mm mrad)	9.893	4.276	1.895
Horiz. Twiss α at crossover	-0.697	-1.115	-1.124
Horiz. Twiss β at crossover	1.998	2.493	2.538
Horiz. Twiss α at combo entry	-0.585	-0.981	-0.991
Horiz. Twiss α at combo entry	1.806	2.179	2.221
Vert. RMS Emittance (π mm mrad)	7.792	6.544	5.730
Vert. Twiss α at crossover	-0.561	-0.235	-0.165
Vert. Twiss β at crossover	0.721	0.853	1.288
Vert. Twiss α at combo entry	-0.287	-0.050	-0.045
Vert. Twiss βat combo entry	0.594	0.810	1.256

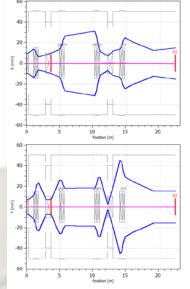
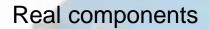
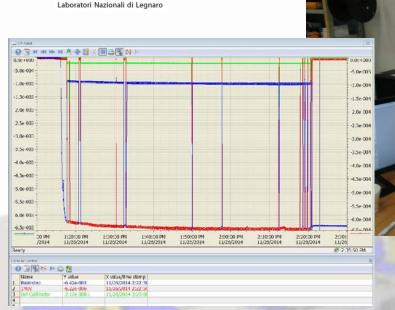



FIGURE 12. 50 MEV BEAM TUNE. 0.09% LOSSES. BEAM SPOT 5.0 MM.

Simulations



Ottawa November 25-28 2014

The Factory Acceptance related to the beam test:

- Low current test completed (440 microA @ 1MeV)
- High current test partially completed (700 microA @1MeV)
- Reliability problem (electonic control board, Insulation transformer,..)
- Components to be replaced (lower coil, insulation trensformer, source upgrading)

The proposed schedule for the completion of the Cyclotron delivery made by the BEST company

Best Theratronics

MEMORANDUM

Topic:	Milestone schedule
Date:	14 October 2014
System:	Best 70p Cyclotron INFN-LNL
Document Serial Number:	ME700_01_002
Author:	Leandro AC Piazza

Summary

This memorandum describes the proposed update to the milestone schedule from what was originally agreed in the Best 70 Cyclotron Technical Offer, March 2010 [BEST] and further updated with the Best Milestone Schedule Memorandum [ME700_01_001].

Memorandum

ME700_01_00

Going forward, Best does not anticipate any further delays to the schedule.

Proposal

Based on the FAT progress achieved on October 9th, Best proposes the following revised mileston¢ schedule.

Cyclotron services installation at INFN-LNL will start at the achievement of Milestone 4:

Milestone	Target
MS0: Contract effective date	Complete
MS1: Submitting technical docs to INFN-LNL for approval	Complete
MS2: Start of development and manufacturing	Complete
MS3: Start of cyclotron factory tests	Complete
MS4: Delivery of cyclotron to INFN-LNL (leaving Ottawa)	Jan 2015
MS5: Beginning of installation at INFN-LNL	March 2015
MS6: End of installation and start of on-site test	May 2015
MS7: Beginning of commissioning (and SAT)	June 2015
MS8: End of commissioning	Sept 2015

This memorandum is official when approved by one of the following:

Richard R. Johnson

General Manager Best Cyclotron Systems Inc

Vasile Sabaiduc

Director of Operations Best Cyclotron Systems Inc.

Future

- •Preparation of the Acceptance Tests Documents and protocols
 - **OSite Acceptance Test (SAT)**
- •Definition of FAT (additional) and SAT schedule.
- •Synchronization of the Cyclotron delivery and the Building construction
- •Supervision of the Site Installation and interface with the Building Construction activities
- Participation at the SAT

HAPPY ENDS

Thank you for the attention

The working group

Group leader (RUP) Machine Phisicist (Deputy) Machine Phisicist Consultant Consultant

A. Lombardi
M. Maggiore
Daniela Campo
L. Calabretta
C. De Martinis

The BEST Theratron Company