SPES Control System

M. Bellato

SPES - TAC meeting 4-5 Nov 2014

- Update on LLRF
- Update on CB controls
- Update on network infrastructure
- Update on Software infrastructure
- Update on Software developments

• Update on LLRF

- Update on CB controls
- Update on network infrastructure
- Update on Hardware developments
- Update on Software developments

LLRF Developments

- LLRF for RFQ/LINAC cavities control
- Existing analog controllers have maintainability problems
- Need for higher resolution phase control
- New controller based on HF sampling/ digital control
 - More versatile, adapts easily to 40 MHz, 80 MHz, 160 MHz and 352 MHz cavities
 - An EPICS IOC is embedded in each LLRF controller

LLRF Controller Block Diagram

LLRF pre-production boards

RF I/O conditioning

LLRF in beam tests

- Firmware 70% ready
- EPICS interface in progress
- Power monitors missing
- Embedded scope missing
- The target is : ready for Q3 2015

Bandpass filters

- Update on LLRF
- Update on CB controls
- Update on network infrastructure
- Update on Hardware developments
- Update on Software developments

Charge Breeder Control

SPES - TAC meeting 4-5 Nov 2014

ECR Control System Architecture

- The control system is being developed using a prototype of the new LNL EPICS IOC
- Full replacement of the existing
- This control system will be easy adapted to the SPES Charge Breeder
 - Plan for CB operation on Q1 2016

The ECR EPICS IOC

- The new standard IOC developed at LNL has been adapted for this application
- A prototype is being used, which has:
 - 32 analog inputs (16bits, 250ksps)
 - 16 analog outputs (16 bits)
 - 48 digital inputs
 - 48 digital outputs
 - 8 UART RS232
- Later, the prototype will be replaced with the final version of the IOC; the software will remain unchanged

The ECR Vacuum Control System

- Adapted to the new standard controller developed at LNL
- A prototype will be used initially for this application
- The IOC will communicate with the PLC using the PROFINET protocol for reading the status and sending commands

ECR IOC Implementation

- Many instruments are controlled using analog signals with PID algorithms implemented on the IOC
- Other instruments are controlled through serial communication port using stream commands

- Update on LLRF
- Update on CB controls
- Update on network infrastructure
- Update on Hardware developments
- Update on Software developments

ECR Graphical User Interface

• The GUI is being developed using CSS

Control Network General Architecture

SPES - TAC meeting 4-5 Nov 2014

Control network layout

SPES - TAC meeting 4-5 Nov 2014

Network Architecture

Control network status

- Network is 70% cabled
- Extension to SPES building when available in 2015
- Server cluster installed in data center
- 60TB Fibre Channel storage installed
- Epics archiving in deployment
- NTP, DNS, net management will be installed soon
- VDI installation in progress

SPES - TAC meeting 4-5 Nov 2014

Operator Interface

SPES - TAC meeting 4-5 Nov 2014

- Update on LLRF
- Update on CB controls
- Update on network infrastructure
- Update on Hardware developments
- Update on Software developments

LNL IOC development

- Rationale:
 - Build once, use it everywhere
 - Reliable and easy to maintain
 - Affordable(< 400E target), low power
 - Runs standard X86 code
 - Core CPU is a COM-EXPRESS industry standard
 - Fits the needs of : Magnets & Lenses PS, BPM, Tape Sys, EM, FC, etc
- Design is complete
- PCB Routing & prototype on Q1-2015

- Update on LLRF
- Update on CB controls
- Update on network infrastructure
- Update on Software infrastructure
- Update on Software developments

Beam Diagnostics

- New Control SW
 - EPICS based
- Installation on the whole ALPI/PIAVE/Tandem complex completed.
- Reuse of legacy VME HW and new IOC's
- Ready for SPES HW

SPES - TAC meeting 4-5 Nov 2014

Magnets & Lenses PS Control

New EPICS based magnet control SW on recently installed beam transfer Line for :

- Quadrupoles
- Dipoles
- Steerers
- Teslameters

Summary

- LLRF is progressing but still ~1 year of developments before mass production
- CB is far from being addressed, ECR control is a pale surrogate
- IT support for control is on track, we expect a benefit in a short time
- Concern about building infrastructure for controls on SPES, CB and new transfer lines