

X ATLAS Italia workshop on Physics and Upgrades

February10th-12th, 2015 Dipartimento di Fisica dell'Università degli Studi di Milano and INFN - Sezione di Milano

Long Lived Particles: highly ionizing and neutral decaying hadronically

C. Gemme⁽¹⁾, <u>R. luppa⁽²⁾</u> and M. Verducci⁽³⁾

⁽¹⁾ INFN Genova
 ⁽²⁾ University and INFN Rome Tor Vergata, CERN
 ⁽³⁾ INFN Rome and CERN

Outline

- Long Lived Particles (LLPs): SUSY and exotic models
- Strategy and results from Run1:
 - Heavy charged LLPs
 - Neutral LLPs hadronically decaying in the hadronic calorimeter
 - Neutral LLPs hadronically decaying in the Inner Detector and/or in the Muon Spectrometer
- Lessons from Run1
- Run2 perspective
- Summary

LLPs in SUSY and exotic models

"Long-lived" here means "lived enough to be detected".

A number of theories and models foresee non-SM LLPs to be produced at LHC, namely: Hidden Sector, SUSY RPV decays, Split-SUSY, GMSB, AMSB... (list far from exhaustive).

The signatures to exploit for the detection depend on the nature of the LLP:

- slow —> TOF measurements
- unusually (usually highly) ionizing —> dE/dx measurements
 - R-hadron (coloured sparticle (squark or gluino) + light SM quark) decays; heavy squarks mediate gluino decay (strong virtuality, e.g. Split-SUSY)
 - *lightest chargino only slightly heavier than lightest neutralino (AMSB)*
- charged decaying —> observation of disappearance or detection of unusual tracks
- neutral decaying —> detection of displaced vertices or jets or MET measurements
 - An hidden sector interacts with the SM sector via (heavy) "communicator" particle(s)
 - Long-lived singlinos decaying in Stealth SUSY.

Highly Ionising LLPs

Analysis carried out by the Genova ATLAS group: A. Favareto, C. Gemme, E. Guido, S. Passaggio, L. Rossi.

This week ready for circulation in the SUSY group, aiming at Moriond2015. Supporting note <u>here</u>.

Searching LLPs with a pixel-only approach has some advantages:

- provides a direct (and rather model independent) measurement of the mass of the hypothetical particle;
- signal efficiency not affected by other sub detector (calorimeter or MS) requirements

• Higher geometrical acceptance and good lifetime acceptance Main issues:

- Background estimation has to be data-driven, properly reproducing dE/dx dependence on p and η.
- Background rejection requires severe high-p_T and isolation cuts;
- Pixel ionization is not available at the trigger level: other signatures (MET!) must be used efficiency is ~20% for stable particles and 60-90% for metastable.

Stable and LLPs searched for:

- **Stable charginos** (studied between 100 and 800 GeV)
- Stable gluino, sbottom and stop R-hadrons (100-1500 GeV, distributed over generic, Regge and intermediate models)
- Metastable charginos (80-600 GeV, τ_{chargino}=0.3/1.0 ns, AMSB parameter from m_{3/2}=29 TeV to 212 TeV, decay forced to neutralino+pion (m_{neutralino}=m_{chargino}-140 MeV))
- Metastable gluino R-hadrons (decay to neutralino+gluon or neutralino+qqbar, gluino mass 400-1400 GeV, neutralino 100-1300 GeV in different samples, τ_{gluino}=0.1/1.0/10 ns)

Highly ionizing LLPs - search strategy

- Fit a Bethe-Bloch empirical function of low mass SM particles in special mbias run.
- Check the calibration monitoring the proton mass peak.
- The BB function allows to measure the particle mass from its energy release and momentum measurement (for $0.3 < \beta\gamma < 1.5$).
- Search for high-pT, isolated particles with high ionization.

Charged LLPs - cut flow

Cut level	# Events	Cut Eff.	Total Eff.
Offline $E_{\rm T}^{\rm miss}$	798001	0.21	0.019
Primary vtx	796772	1.00	0.019
High-p _T	534692	0.67	0.013
Isolation	88431	0.17	2.1E-03
Electron veto	60450	0.68	1.5E-03
High-p	35684	0.59	8.6E-04
High-M _T	6589	0.18	1.6E-04
Ionization	85	0.013	2.1E-06
Muon veto	28	0.33	6.8E-07

Table 10: Observed event yields at different steps of the selection procedure in the 2012 data sample. The total efficiency is computed with respect to the events that have been selected at Tier0 in the JetTauEtmiss.PhysCont.DESDM_RPVLL stream. *Offline* E_T^{miss} is the requirement on MET_RefFinal > 100 GeV. *Primary vtx* requires a primary vertex with at least five tracks. The following cuts require at least one track in the event with: *High-p*_T corresponds to the request on high p_T , cuts on the impact parameters and Pixel/SCT clusters; *Isolation* refers to the requirement that there is no other primary track with p_T > 1 GeV within a cone of 0.25; *Electron veto* rejects tracks matched with electrons; *High-p* corresponds to the requests on p > 150 GeV and $\sigma_p/p < 50\%$; *High-M*_T corresponds to the requests on transverse mass > 130 GeV, *Ionization* is the request on the Pixel dE/dx as explained in the text; finally the *Muon veto* is applied to candidates for the metastable searches.

LLP: heavy charged and hadronic decays

X ATLAS Italia. Milan, Feb. 10th-12th, 2015

Highly Ionizing LLPs - results Entries Entries data 10² 10 ATLAS Internal background (g/qq, m(x)=100 GeV, ==10ns) Stable 10 Metastable duino 1000 GeV no 350 GeV 1 10⁻¹∎ 10 10⁻² 10⁻² ATLAS Internal 8^{10`} 1500 1000 1500 2500 500 1000 2000 2500 2000 Mass [GeV] Mass [GeV] 10⁴ ATLAS ATLAS 8 8 10 section Work In Progress Work In Progress ATLAS ATLAS 15-8 TeV, Ldt-20.3 to 15-8 TeV, Ldt-20.3 15 10 Work In Progress Work In Progress 10³ 5 6-8 TeV, La-20.3 6 section 15-8 TeV, Ldt-20.3 6 10³ 10³ hediction y Prediction 3 10² odiction 8 10^{2} 10^{2} CL 8 95% CL UL 9 Cross CL+95% CL UL 8-+ 948 2 CLs 95% CL UL 8→ plot 2 IL expected ± 1a mQ²)=100-GeV, t=10 m 100 GeV. 110 GeV. 11 10 10 10 = L expected ± 2e II, expected ± 1e L expected z la 11 10 10 10 10 10⁻² 10.5 10% 10 10 10-3 104 104 10 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 10 400 600 800 1000 1200 1400 1600 18 200 200 400 600 800 Mass [GeV] Mass [GeV Mass [GeV Mass [GeV] 10⁴ [<mark>2</mark>] ۲ metastable gluino R-hadrons stable gluino R-hadrons stable chargino (S=8 TeV, Ldt=20.3 fb) 10^{3} -Observed 95% CL exclu WW Excluded region Expected 95% CL excl Decay mode Particle $m(\tilde{\chi}_0)$ [GeV] τ [ns] m > [GeV]10 $\tilde{g} \rightarrow g/qq \, \bar{\chi}^0$, m $(\bar{\chi}^0)$ =100 GeV gluino R-hadron stable 1102 95% C.L. lower limits 10 ATLAS sbottom R-hadron stable 745 Work In Progre of masses of LLPs stop R-hadron stable 758 _ 549 stable chargino computed 200 400 600 800 1000 1200 1400 _ Mass [GeV] gluino R-hadron 100 10 1183 $g/q\bar{q}$

February, 12th 2015

Cross section [pb]

Roberto luppa

7

Neutral LLPs: topology

Two events $H \rightarrow \pi_v \pi_v$ with different signatures of decay to hadronic jets. Left: π_v decaying in the inner detector (A). Right: a π_v decaying in the hadronic calorimeter (B) and a second π_v in the muon spectrometer (C).

HV scalar boson (100-900 GeV mass range explored)

February, 12th 2015

The CalRatio analysis

Analysis published: <u>arxiv:1501.04020</u> (submitted to PLB).

Italian Groups involved in the analysis:

- Universita' della Calabria and INFN:
 - A. Mastroberardino, D.Salvatore, G. Susinno
- INFN Roma: M. Verducci

The collaboration includes members of the University of Washington (USA)

Scalar boson Φ decays to a pair of neutral, long lived scalars or pseudo-scalars (π_v) which in turn decay to fermion pairs

• several combinations of Φ and π_v masses have been explored

Look for decays in the Hadronic Calorimeter (HCal) – A pair of jets with:

- A narrow radius
- No ID tracks pointing towards the jet
- A large energy deposit in the HCal with little to no energy in the Electromagnetic Calorimeter (ECal)

Primary background from SM multijets

• Small contribution from cosmic ray and beam halo events

Φ Mass	$\pi_{\rm v}$ Mass
[GeV]	[GeV]
100	10, 25
126	10, 25, 40
140	10, 20, 40
300	50
600	50, 150
900	50, 150

CalRatio trigger

Dedicated CalRatio trigger to select at least one jet (π_V) in the HCal (JINST 8 (2013) P07015):

- $Log_{10}(E_{Had}/E_{Em}) > 1.2$
- |eta| < 2.5
- no ID tracks with $p_T > 1$ GeV in $\Delta R=0.2$
- E_T > 35 GeV
- Line of Fire jets removal: fake jets by beam-halo muon emitting bremmstrahlung radiation in the HCal

probability π_v

CalRatio analysis cut flow

Considering all φ and $\,\pi_{\!v}$ masses

The same cut-flow has been applied to all the signal samples. Requiring two jets passing all analysis cuts

- A. Event Level Cuts
- B. Event triggered by dedicated CalRatio trigger
- C. Data Quality criteria
- D. Missing Energy (E_T^{miss}) <50 GeV
- E. Require two jets passing:
 - 1.log10 (Eh/Eem) >1.2
 - 2. no tracks p_T> 1.0 GeV in a 0.2 cone around the jet
 - 3. etal <2.5 and -1 ns <t< 5 ns
 - 4. One of the two jets must have fired the trigger and satisfy E_T>60 GeV the other must have E_T >40 GeV

CalRatio background modelling

Three sources of background considered:

SM multijet events

- Dominant background
- Studied with a tag-and-probe method on an independently triggered dataset

Cosmic ray events

- Small contribution
- Reduced by cuts on ET miss and jet timing

Beam halo events

- Very small
- Reduced by same cuts as in cosmic ray events as well as by dedicated trigger and analysis DQ cuts

CalRatio systematics

Dominant systematic uncertainty comes from the Higgs cross-section

Pile-up and trigger uncertainty evaluated using a direct data vs MC comparison with multijet samples for relevant variables

JES uncertainty calculated as a function of EMF and η for low EMF jets by comparing balance in data and MC

(*) Systematic errors that have common values across samples are not listed (Pile-up at 10%, ISR at (+2.9, -1.2)%, and PDF at 2.1%). The last column reports the overall systematic uncertainty (including the luminosity and common systematic errors).

Sample m_H, m_{π_v} [GeV]	$\begin{array}{ c c } H \sigma \\ [\%] \end{array}$	JES [%]	Trigger [%]	$\begin{bmatrix} E_{\rm T}^{\rm miss} \\ [\%] \end{bmatrix}$	Time Cut [%]	Total [%]
$126, 10 \\ 126, 25 \\ 126, 40$	$+10.4 \\ -10.4 \\ +10.4 \\ -10.4 \\ +10.4 \\ -10.4$	$ \begin{array}{r} +2.2 \\ -2.7 \\ +1.5 \\ -1.6 \\ +2.6 \\ -6.2 \\ \end{array} $	$\pm 1.1 \\ \pm 1.3 \\ \pm 1.1$	$ \begin{array}{r} +5.5 \\ -2.4 \\ +3.1 \\ -1.8 \\ +7.7 \\ -4.6 \end{array} $	$ \begin{array}{r} +1.6 \\ -6.6 \\ +0.8 \\ -3.3 \\ +1.9 \\ -5.9 \\ \end{array} $	$+16.4 \\ -16.7 \\ +15.6 \\ -15.5 \\ +18.2 \\ -16.9$
Sample $m_{\Phi}, m_{\pi_{v}}$ [GeV]	$\Phi \sigma$ [%]	JES [%]	Trigger [%]	$\begin{array}{c} E_{\mathrm{T}}^{\mathrm{miss}} \\ [\%] \end{array}$	Time Cut [%]	Total [%]
100, 10 100, 25	$+11.1 \\ -10.6 \\ +11.1 \\ -10.6$	+2.3 -4.0 +5.5 -3.7	$\pm 0.1 \\ \pm 1.2$	$+4.6 \\ -3.4 \\ +3.4 \\ -2.5$	$+2.7 \\ -9.5 \\ +1.7 \\ -0.7$	$+16.7 \\ -18.5 \\ +17.0 \\ -15.8$
$140, 10 \\ 140, 20 \\ 140, 40$	$+10.1 \\ -10.3 \\ +10.1 \\ -10.3 \\ +10.1 \\ -10.3$	$+0.6 \\ -1.1 \\ +1.2 \\ -1.6 \\ +1.3 \\ -1.6$	$\pm 0.5 \\ \pm 1.0 \\ \pm 1.5$	$+4.0 \\ -5.6 \\ +4.0 \\ -3.9 \\ +6.3 \\ -4.6$	+1.9 -6.6 +0.4 -5.0 +1.8 -2.4	$+15.6 \\ -17.2 \\ +15.5 \\ -16.2 \\ +16.5 \\ -15.8 \end{array}$
300, 50	$+9.6 \\ -10.0$	$+0.1 \\ -0.3$	±0.3	$+9.0 \\ -7.4$	$+0.5 \\ -3.0$	$+13.9 \\ -13.3$
600, 50 600, 150	$+11.2 \\ -10.1 \\ +11.2 \\ -10.1$	$+0.0 \\ -0.1 \\ +0.2 \\ -0.2$	$\pm 0.2 \\ \pm 0.3$	$+11.7 \\ -11.3 \\ +11.5 \\ -10.2$	$+2.2 \\ -4.4 \\ +2.7 \\ -5.3$	$+17.0 \\ -16.2 \\ +17.5 \\ -15.1$
900, 50 900, 150	$+12.8 \\ -11.5 \\ +12.8 \\ -11.5$	$+0.0 \\ -0.1 \\ +0.2 \\ -0.3$	$\pm 0.1 \\ \pm 0.2$	$+12.6 \\ -9.7 \\ +11.8 \\ -10.9$	$+1.0 \\ -3.7 \\ +0.9 \\ -2.5$	$+18.5 \\ -15.9 \\ +18.1 \\ -16.3$

CalRatio results

MC sample	Excluded range	Excluded range
$m_H, m_{\pi_{\mathbf{v}}}$	$30\% \text{ BR } H \to \pi_{\rm v} \pi_{\rm v}$	$10\% \text{ BR } H \to \pi_{\mathrm{v}} \pi_{\mathrm{v}}$
[GeV]	[m]	[m]
126, 10	0.10 - 6.08	0.14 - 3.13
126, 25	0.30 - 14.99	0.41 - 7.57
126, 40	0.68 - 18.50	1.03 - 8.32

February, 12th 2015

The MS-ID analysis

Paper draft under revision with the Editorial Board.

Involved groups:

- University of Washington, Seattle, USA,
- University of Massachusetts, Amherst, USA
- University and INFN of Tor Vergata, Rome, Italy (R. luppa)
- Simply looking for a pair of Displaced Vertices (DV) in the MS, ID or one in each.
- Benchmark models:
 - Scalar boson Φ decays to a pair of neutral, long lived scalars or pseudo-scalars (π_v) which in turn decay to fermion pairs (several combinations of Φ and π_v mass have been explored). Z' decaying in many π_v
 - Search for two displaced vertices in the MS, ID or one in each.
 - Stealth SUSY with gluing decaying into long lived singlino.
- Dedicated triggers needed (Muon Rol for MS and jet + ET^{miss} for ID)
- Standalone vertex reconstruction in the MS, as well as in the ID
- Challenging estimation of backgrounds: difficult choice and handling of control regions

Table I. The five different topologies considered in the analysis and the corresponding analysis channels and benchmark samples.

Channel	Applicable topologies	Benchmarks	
Muon Cluster	IDVx+MSVx, 2MSVx	Scalar boson Stealth SUSY	
$Jet + E_T^{miss}$	2IDVx, IDVx+MSVx, 2MSVx	Z'	

Table II. Mass parameters for the simulated scalar boson, Z'and Stealth SUSY models.

scalar boson mass [GeV]	$\pi_v \text{ mass [GeV]}$
100	10, 25
125	10, 25, 40
140	10, 20, 40
300	50
600	50, 150
900	50, 150
Z' mass [TeV]	π_v mass [GeV]
1	50
2	50
2	120
\tilde{g} mass [GeV]	\tilde{S} , S mass [GeV]
110	100, 90
250	100, 90
500	100, 90
800	100, 90
1200	100, 90

MS-ID vertexing and cut flow

Search and reconstruction algorithm in the MS:

- 1. Construction of segments in single MultiLayers (ML), via chi2 minimisation, if P>0.05;
- 2. merging segments (ML1 and ML2) in tracklets on the basis of specific criteria on Δb and $\Delta \alpha$ (barrel and endcap).

Search and reconstruction in the ID:

Tracking algorithm developed for use in a SUSY search for displaced vertices in the ID. The signatures studied in this analysis will produce many unassociated hits in the default tracking, because the larger impact parameters. Displaced tracks are reconstructed by making a second iteration of track finding using only unassociated hits, with loosened requirements on the track impact parameter and number of hits shared between tracks.

Table V. Summary of good MS vertex criteria requirements in barrel and endcap regions.

Description	Barrel criteria	Endcap criteria
MDT hits	$300 \le n_{\rm MDT} < 3000$	$300 \le n_{\rm MDT} < 3000$
RPC/TGC hits	$n_{\rm RPC} \ge 250$	$n_{\rm TGC} \ge 250$
Track isolation	$\Delta R < 0.3$	$\Delta R < 0.6$
Track $\Sigma p_{\rm T}$	$\Sigma p_{\rm T} < 10 { m GeV}$	$\Sigma p_{\rm T} < 10 { m ~GeV}$
Jet isolation	$\Delta R < 0.3$	$\Delta R < 0.6$

Table IV. Good vertex criteria for vertices reconstructed in the ID.

Requirement	Scalar boson	Stealth SUSY	Z'
d/σ from material	≥ 6	≥ 6	≥ 6
vertex χ^2 prob.	> 0.001	> 0.001	> 0.001
$\Delta R(vtx, jet)$	< 0.4	< 0.4	< 0.6
nTracks	≥ 5	≥ 5	≥ 7

MS-ID trigger and vertexing efficiency

MS BARREL

Figure 1. Efficiency for the Muon RoI Cluster trigger as a function of the long-lived particle's decay position for decays in the barrel.

r [m]

MS ENDCAP

Figure 2. Efficiency for the Muon RoI Cluster trigger as a function of the long-lived particle's decay position for decays in the endcaps.

ID

jet + ETmiss trigger practically 100% efficient

 \square

ш

RIGGI

Figure 6. Efficiency for reconstructing a vertex in the MS barrel as a function of the radial position of the long-lived

Figure 5. ID Vertex reconstruction efficiency for scalar boson, Stealth SUSY and Z' benchmark samples.

February, 12th 2015

particle decay.

MS-ID systematics and expected background

Table	VI.	Su	mmary	y of	the	systematic	unc	cert	aint	ties	on	dis-
placed	ver	tex	recons	stru	ction	efficiencies	in	$_{\rm the}$	ID	and	Μ	S.

m. [CoV] m [CoV]		IDVy	MSVx			
m _⊉ [Gev]	m_{π_v} [Gev]	IDVX	barrel	endcaps		
100	10	2.7%	6.8%	11.2%		
100	25	2.1%	6.4%	10.4%		
125	10	2.5%	7.0%	9.9%		
125	25	2.5%	6.8%	9.7%		
125	40	2.4%	6.5%	8.0%		
140	10	2.7%	7.0%	9.6%		
140	20	2.7%	6.6%	9.6%		
140	40	1.6%	6.6%	7.9%		
300	50	2.7%	6.9%	6.3%		
600	50	2.9%	6.8%	5.4%		
600	150	3.1%	6.6%	4.0%		
900	50	3.5%	6.6%	5.7%		
900	150	3.0%	5.9%	3.8%		
]	C VI	IDV	M	SVx		
$m_{\tilde{g}}$ [Gevj	IDvx	barrel	endcaps		
1	10	3.8%	5.6%	4.0%		
2	50	2.3%	5.8%	3.8%		
5	00	2.4%	6.3%	3.8%		
8	00	2.7%	6.5%	3.5%		
12	200	1.5%	6.6%	3.8%		
$m_{Z'}$ [TeV] m_{π_v} [GeV]		IDV	MSVx			
		IDvx	barrel	endcaps		
1	50	2.5%	6.8%	6.3%		
2	50	2.6%	7.0%	6.6%		
2	120	2.2%	6.6%	5.2%		

D: Systematic uncertainty due to differences in track reconstruction in data and simulation was estimated by studying K_S⁰ decays in multi-jet control samples.

MS: Systematic uncertainties due to data-simulation discrepancies were studied using jets that punch through the calorimeter and shower in the MS. Both for trigger and reconstruction.

JES, pileup, PDF and ISR considered.

Other possible sources of systematic uncertainty are <u>negligible</u> compared to the uncertainty related to the vertex reconstruction.

Background events

Table VIII. Number of events predicted for different finalstate topologies.

Channel	Topology	Predicted
$Jet + E_T^{miss}$	2IDVx	$(1.8 \pm 0.4) \cdot 10^{-4}$
$Jet + E_T^{miss}$	IDVx+MSVx	$(5.5 \pm 0.9) \cdot 10^{-4}$
$Jet + E_T^{miss}$	2MSVx	$(0.0^{+1.4}_{-0.0}) \times 10^{-5}$
Muon Cluster	IDVx+MSVx	2.0 ± 0.4
Muon Cluster	2MSVx	$0.436^{+0.052}_{-0.002}$

X ATLAS Italia. Milan, Feb. 10th-12th, 2015

MS-ID results

February, 12th 2015

Lessons from Run1

Theories and models:

Incorporating many models can well be complicated, but also reveal the limitations of the analysis (e.g., MC only lists out a maximum of 12 Muon Rols per event, not an issue for low-mass samples but a problem for higher masses)

Selection cuts:

- Be careful about how internal cuts in algorithms can shape the analysis
- Selection cuts are simple to add, but they make the analysis more model and signature dependent.

Background:

- Estimation of Background can be complicated, e.g.:
 - QCD background: a novel method of calculating the background was developed which relied on determining the probability that a single jet would pass the analysis cuts...BUT, development and implementation of the method were time consuming at every stage including the review
 - Beam Halo was suppressed too well! The background prediction was 0, but the uncertainty was enormous due to the scaling from unpaired iso to collision BCs!
- Standard prescriptions for MC production might not provide all the backgrounds you need (MS-ID suggestion use zero-bias rather than minimum bias overlay).
- Background estimations work better when you have access to a solid control region.

Collaboration:

- Collaborate properly with other groups doing similar analyses: share methods, MC samples and challenges.
- Have a better grasp of the cover (and limitations) of the analysis (e.g.: SUSY DV+jet more sensitive than IDvx+IDvx).
- Develop analyses like you're sharing them with the entire collaboration (make the code modular, readable and usable).

Run2 perspective

H.I.P.

- With IBL, in Run2 we can measure the Pixel dE/dx with 4 points (discrimination power increased, area ionization detectable).
- Running the analysis on xAOD we save for each track dE/dx, good cluster number, IBL in overflow.
- The use of tracklets (p_T>5 GeV, pixelHits>=4, no request on SCT) will increase the lifetime acceptance and lower needs for timing and CPU (not yet established whether include them in xAOD or not).
- New Pixel dE/dx, including IBL, now in Release 20, being validated by Tracking group.
- Few fb should be sufficient to improve the present results.

CalRatio

- Novel methods of background prediction can be extremely time consuming and alternatives should be considered early on.
- A variety of new cuts should be investigated, not just those expected to give a high signal-to- background ratio, to allow for easier calculation of the background and for model-independence or multiple signatures.
- Consider how the signature would evolve with increasing proper lifetime (or whatever parameter you are concerned with).

MS+ID

- try and add a (heavily prescaled) trigger to select events with lots MS activity that fail a jet veto (background estimation)
- migrating the old analysis code to be xAOD compatible (MSvertex default in standard reconstruction). Add new features.
- find better options for the IDvx background
- anticipate needs for background/control-regions before data-taking

FIND LLP :D

Summary

- Italian groups are deeply involved in searches for Long Lived Particles at LHC with the ATLAS detector.
- The Run1 dataset has been explored looking for Highly Ionising Particles and Displaced Vertices. No indication of New Physics was found and the results have just been or are going to be published.
- The experience of Run1 is the basis for important improvements of the analysis, in terms of approaches, methods and tools.
- All groups contributing to the H.I.P/D.V. Run1 analyses are already at work on the Run2 challenge.

Backup

Good clusters dE/dx – Maybe spare

Track dE/dx with IBL – Maybe spare

9

Track dE/dx with IBL

Selection -Spare

- ✓ Strategy: search for high-p_T, isolated particles with high ionization.
 For metastable search, also requiring that candidate is not a muon.
- Event Selection
 - GRL
 - Confirmation of Missing energy (>100 GeV)
 - PV and event cleaning
- Candidate track
 - High pT (>80 GeV)
 - Primary with at least 3 pix hits and 6 SCT hits
 - Isolated in a cone 0.25
 - No electron matching
 - Large momentum (p>150 GeV)
 - Large Transverse mass > 130 GeV
 - Large ionization (>1.8 MeV/g cm-2)
 - (no Muon matching for metastable searches)

Line of Fire Selection: ATL-COM-PHYS-2011-844

Off-line selection criteria, continued.

Uses 3 parameters of MS segments:

- $\delta\phi$, the difference in phi between the trigger jet and Moore segment.
- $\gamma_{MS} = p_{Moore} \cdot \hat{z} / |p_{Moore}|$, the directional cosine between the Moore segment and z-axis.
- δr, the difference between the radius of the leading HEC cell in the jet and CSC segment.

	Criteria
End-cap	
	1 MS segment with:
	$ \delta r < 120 \text{ mm},$
	$ \delta\phi < 0.2,$
	$ \gamma_{MS} > 0.98.$

Distribution of MS segments passing Calorimeter Ratio trigger in run 182454.

Line of Fire Selection: ATL-COM-PHYS-2011-844.

How do we estimate the JES Uncertainty?

- We use the <u>Dijet</u> Pt Balance Method (In-situ technique D0: hep-ex/0012046v2)
- This technique uses two jets:
 - a Reference jet
 - and a Probe jet, back-to-back
- We study the <u>di-jet pT balance</u> of the jet energy response in pseudorapidity (we added even EMF dependency)
- We study the Asymmetry of dijets pt:

$$A = \frac{p_T^{Probe} - p_T^{Ref}}{p_T^{average}}$$

and the Response of the probe jet wrt the reference jet:

$$R = \frac{2+A}{2-A} = \frac{p_T^{Probe}}{p_T^{Ref}}$$

The inverse of the Response is proportional to the average JES correction

The final uncertainty is obtained by comparing DATA / MC Response

Asymmetry Definition

We identified a Reference Region (REF):

EMF in 0.7- 0.9 range (high statistics and standard EMF jets)

Dependency on pTavg, EMF and Eta

We identified a Reference Region (REF):

EMF in 0.7- 0.9 range (high statistics and standard EMF jets)

We divided the analysis in different pTayg ranges:

- Depending on Trigger threshold we have:
 - EF_j55 60 < pTavg < 100</p>
 - EF_j80 85 < pTavg < 125</p>
 - EF_j110 115 < pTavg < 155</p>
 - EF_j145 150 < pTavg < 180</p>

Different asymmetries for each EMF bin (7 bins):

0-0.05, 0.05- 0.20, 0.20-0.40, 0.40-0.60, 0.60-0.70, 0.7-0.9, 0.9-1.0

Jet response at EM scal

Signal Region EMF<=0.05 (excluded for poor statistics)

Four different Eta regions

- ¶|<0.8 ∣
- **▼** 0.8<|η|<1.35
- **▼** 1.35<|η|<1.70
- **▼** 1.70<|η|<2.5

ATLAS-CONF-2014-041

JES Systematics II

HV Good Medium Jet & Robust Tracks

A Robust Track has: Pixel_hits >= 2, Pixel_hits+SCT_hits >=9 A HVGood Medium Jet is : not BadHVMedium and not Ugly

A BadHVMedium jet occurs if at least one of the following conditions is satisfied:

- hecf>0.5 and |HECQ| >0.5 (HEC spikes);
- |jetNegET| >60 GeV (HEC spikes);
- |timing| >10 ns (non-collision background and cosmics);
- FMax>0.99 and |η| <2.0 (non-collision background and cosmics);
- emf>0.95 and CHf<0.05 and |η|<2 (non-collision background and cosmics);
- 1-|HECQ| <hecf (HEC spikes);
- emf>0.9 and |LArQ| >0.8 and |η| <2.8 (EM coherent noise).

An Ugly jet occurs if BCH_CORR_JET>=0.05 and BCH_CORR_CELL>=0.05.

Name	Looser	Loose	Medium	Tight
		Looser or	loose or	medium or
HEC spikes	HECf>0.5 && HECQ >0.5 &&LArQmean>0.8, or neg. E >60 GeV	HECf>0.5 && HECQ >0.5	HECf>1-JHECQ	
EM coherent noise	EMf>0.95 && LArQ >0.8 &&LArQmean>0.8 && eta <2.8	EMf>0.95 && LArQ >0.8&& eta <2.8	EMf>0.9 && [LArQ]>0.8 && [eta]<2.8	LArQ > 0.95 or EMf > 0.98 && [LArQ] > 0.05
Non- collision bkg & cosmics	EMf<0.05 && Chf <0.05&& eta < 2 or EMf<0.05 && eta >= 2 or FMax > 0.99 && eta <2	t >25 ns	t >10 ns or EMf<0.05 && Chf < 0.1 && eta < 2 or EMf>0.95 && Chf < 0.05 && eta < 2	Emf<0.1&&Chf < 0.2 && eta < 2.5 or EMf>0.9 && Chf<0.1 && eta <2.5 Or Chf < 0.01 && eta < 2.5 or EMf<0.1 && eta > 2.5

Figure 6. ΔR between the vertex and the center of the near-Figure 5. Track multiplicity for vertices obtained from four est jet for vertices from four signal benchmark samples and signal benchmark samples and background multi-jet events. background multi-jet events.

Figure 10. Average fractional occupancy of chambers as a function of ΔR between the center of the MDT chamber and either the punch-through jet's axis for the multi-jet samples or the $\pi_{\rm v}$ decay position for signal MC samples. Only punch-through jets with at least 250 MDT hits are included.