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Precision tests of the Standard Model

(MW, sin2theta_w, mtop, MH) measurements likelihood of the EWV fit of the SM

vector boson scattering and unitarity violations,

Higgs boson pair production determination of the potential
of the scalar sector (of the SM)

mtop measurement stability of the EW vacuum

matrix element progresses for signals and backgrounds
development of Monte Carlo event generators
new input for the proton PDFs from LHC data

a very rich and interesting physics program in front of us
which requires a global coordinated effort to beat several important systematics
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Precision tests of the Standard Model

GFitter, arXiv:1407.3792
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with the MH input the SM lagrangian (gauge sector) is assigned,
the EWV fit can determine the preferred MW (2-loop EW+h.o.) and mtop (free parameter)
and check the compatibility of the SM hypothesis with the experimental measurements

the result of the global EWV fit of the SM

yields a result for MW with an error AMW=8 MeV smaller than the one of the direct measurement
mtop=173.81 +0.85 GeV compatible with the world average top mass

is the 1.5 sigma discrepancy in the above plot, between the data and the theoretical prediction,

just a fluctuation,

a systematic effect of the MW measurement at hadron colliders

a hint for BSM physics ?
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Precision tests of the Standard Model
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relevance of a correct estimate of the central value and of the associated error
(in the plot only the central values of the two theoretical predictions are compared)
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MWV prediction in the SM

G.Degrassi, PGambino, P.Giardino, arXiv:1411.7040
recent re-evaluation of the MWV prediction, with an MSbar calculation

MW = 80.357 £ 0.009 + 0.003 GeV  (parametric and missing higher orders)

includes the full 2-loop EWV result, higher-order QCD corrections, resummation of reducible terms
central value obtained with the current top mass world average mt=173.xx + * GeV

MW grows with mtop: Amt=+1 GeV = AMW = +6 MeV
with AGi(MZ): AGra(MZ)=+0.0003 = AMW = -6 MeV

a simultaneous variation of both parameters by +10 may increase MW up to 80.370 GeV
-10 may decrease MW down to 80.345 GeV

the comparison of this MSbar calculation with the corresponding one in the OS scheme
suggests that missing higher orders might have a residual effect of O(6 MeV)
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MW measurement from charged current Drell-Yan

MW is measured from the study of charged-current Drell-Yan observables:
lepton-pair transverse mass, lepton transverse momentum, missing E_ T
sensitive to MW because of a jacobian peak of the distributions
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the MW measurement is challenging because of the missing neutrino:
the relevant observables can be defined only in the transverse plane and
the reconstruction of the missing momentum may suffer of the high pile-up of the events

MW is extracted with a template-fit of the data

the theoretical input (model dependent) is crucial in the preparation of accurate templates
any theoretical uncertainty propagates to the MW extraction as a systematic uncertainty:
missing higher-order corrections, PDF uncertainties, non-perturbative effects
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MW measurement

The current error of £15 MeV is dominated by the Tevatron result
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MW measurement: errors as in CDF paper arXiv:1311.0894

m7 fit uncertainties pgT fit uncertainties
Source W — uv W —ev Common Source W — uv W — ev Common
Lepton energy scale 7 10 5 Lepton energy scale 10 5
Lepton energy resolution 1 4 0 Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0 Lepton efficiency 1 2 0
Lepton tower removal 2 3 2 Lepton tower removal 0 0 0
Recoil scale 5 5 5 Recoil scale 6 6 6
Recoil resolution 7 7 7 Recoil resolution 5 5 5
Backgrounds 3 4 0 Backgrounds 5 3 0
PDFs 10 10 10 PDFs 9 9 9
W boson pr 3 3 3 W boson pr 9 9 9
Photon radiation 4 Photon radiation 4 4 4
Statistical 16 19 0 Statistical 18 21 0
Total 23 26 15 Total 25 28 16

Are PDF uncertainties under control?
There is no pQCD uncertainty estimate
Which is the accurate treatment of NLO-EWV effects!?
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Drell-Yan observables for MW and simulation codes

The basic description of the observables relevant for the MW measurement
(lepton-pair transverse mass, lepton transverse momentum, missing E_T distributions)
requires the simulation of multiple initial state QCD radiation and of QED final state radiation
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The lepton-pair transverse mass is mildly The lepton transverse momentum

sensitive to the details of QCD radiation, is very strongly sensitive to the details

but receives large corrections at detector of QCD radiation, because of the log(ptV/MV)
level enhancement at low ptV values

The QED-FSR effects modify at the several per cent level the peak region,
yielding shifts of the extracted MW of O(150 MeV)

What is the needed perturbative accuracy of the templates, to meet the 10 MeV goal for the error!?

which higher-order QCD, mixed QCD-EW, higher-order EWV, non-perturbative effects
must be included in the simulations!?
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Drell-Yan observables for MW and simulation codes

We need an accurate description of the ptV spectrum to predict the ptlep and the MT distributions
e perturbative elements (matching of QCD/EW matrix elements with resummation)

* non-perturbative elements (PDF uncertainties,
intrinsic kt of the partons in the proton, part of the PS tune)

» different contribution of heavy- vs light- flavors in the PDF to the ptV spectrum
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Matching QCD fixed order with resummation
* Analytic resummation of log(ptV/MV) NNLO-QCD accuracy on the total xsec + NNLL resum.

DYqT (B'Ve rsion Of DYReS) G. Bozzi, S.Catani, D. de Florian, G. Ferrera, M. Grazzini , arXiv:1007.2351
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* The NNLL resummation affects the low-ptV part of the spectrum

* The high-ptV part of the spectrum has NLO accuracy
* The distribution depends on the resummation scale Q (matching between resummed and fixed order)

the inclusion of higher orders reduces the dependence on Q
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Matching QCD fixed order with resummation

* Matching of NNLO-QCD matrix elements with QCD-PS

DYN N LO PS A.Karlberg, E.Re, G.Zanderighi, arXiv:1407.2940
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* Improvement of Wj (Zj) samples, done with the MiNLO approach and a modified Sudakov form factor
* The distribution has NLO accuracy through the whole ptV range
* The NNLO accuracy on the inclusive observables is based on the rescaling with DYNNLO results

* The uncertainty bands have been obtained varying with a combination of ren./fact. scale variations
of the Wj/Zj MiNLO generator and of the DYNNLO simulation
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Matching QCD fixed order with resummation

* Matching of NNLO-QCD matrix elements with QCD-PS

U N 2 LO PS+ N N LO S.Hoeche,Y.Li, S.Prestel, arXiv:1405.3607
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* The UNLOPS scheme merges 0-jet and |-jet samples (it requires a merging scale),

it preserves the accuracy on the total xsec with the definition of a 0-jet bin which is not showered
* The UN?LOPS scheme extends the approach at O(alphas?)

* Important differences in the definition of the uncertainty bands between DYNNLOPS and UN*LOPS

comparison of the two approaches is in progress
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Matching (QCD+EW) fixed order with (QCD+QED) Parton Shower

* Matching NLO-(QCD+EW) matrix elements with (QCD+QED)-PS

POWH EG C.Bernaciak, D.Wackeroth, arXiv:1201.4804, L.Barzeé et al., arXiv:1202.0465, arXiv:1302.4606
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* The matching of NLO-(QCD+EW) matrix elements with (QCD+QED)-PS
introduces a (small) additional suppression at low ptZ values

* CC-DY and NC-DY differ for the flavor (charge) of initial state quarks — different QED effects
relevant in the PS tuning
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Matching (QCD+EW) fixed order with (QCD+QED)-PS in POWHEG

Interplay of QCD and EW corrections: is a factorized Ansatz (differential K-factor) accurate ?
what is the role of the exact NLO-EW corrections ?

L.Barze et al., arXiv:1302.4606 30 I I I I I
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* For the lepton-pair invariant mass distributions
the convolution of the EW kernel with QCD radiation preserves size and shape of EW corrections

* For the lepton transverse momentum distribution,
the exact treatment of the radiation kinematics shows a large deformation of the EVV effects by
QCD showering (corrections of O(alpha alphas) and higher ) spicmaierAHuss, c. schwinn, arxiv:1403.3216

* In the ptlep distribution, also the subleading EW terms can be enhanced by the large QCD logarithms
(assessment of difference between pure QED-FSR and matched NLO-EW with QED PS in progress)
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Drell-Yan observables for MW and simulation codes

We need an accurate description of the ptV spectrum to predict the ptlep and the MT distributions
* perturbative elements (matching of QCD/EW matrix elements with resummation)

* non-perturbative elements (PDF uncertainties,
intrinsic kt of the partons in the proton, part of the PS tune)

» different contribution of heavy- vs light- flavors in the PDF to the ptV spectrum
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PDF uncertainty affecting MWV extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587

Conservative estimate of the PDF uncertainty, obtained from the CC-DY channel alone,

using a template fit approach:

distributions o

if we would use a different PDF replica in the preparation of the templates
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PDF uncertainty affecting MWV extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587
The dependence of the MW PDF uncertainty on the acceptance cuts provides interesting insights

normalized distributions 90
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PDF uncertainty affecting MWV extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587
The dependence of the MW PDF uncertainty on the acceptance cuts provides interesting insights

normalized distributions
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PDF uncertainty affecting MWV extracted from the ptlep distribution

G.Bozzi, L.Citelli, AV, arXiv:1501.05587
The dependence of the MW PDF uncertainty on the acceptance cuts provides interesting insights

normalized distributions
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pV <15 GeV | |m[ <49 |80.400 + 0.009 — 0.004 | 80.401 & 0.003 0oL ¢
P <15 GeV | 1.0 < [ < 2.5 | 80.392 + 0.025 — 0.018 | 80.388 = 0.012 .

® cut on the lepton pseudorapidity

0.0001

* the normalized ptlep distribution, integrated over the whole |
lepton-pair rapidity range, does not depend on x and 08 |
depends very weakly on the PDF replica 06 f -
8 TeV W™ NNPDF3.0

J

s

I

I

04 + 1
. /
/
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. : < 02l
* the central region is the most uncertain [

0 . __'

-0.2

* PDF sum rUIeS - -0.4 + |m| < 4.9 dashed ud
. . . . . g . Im| < 2.5 solid “gg
non trivial compensations between different rapidity intervals =~ oo llul<tdoves . . *
0.0001 0.001 0.01 0.1 1
among different flavors o

® are PDFs a bottleneck for MW? can we improve!

2 complementary answers: |) more inputs to the PDF fit; 2) exploting ptZ info
Alessandro Vicini - University of Milano Milano, February | 1th 2015



Non-perturbative effects and the ptV spectrum

® the ptlep spectrum receives a very large contribution from the recoil of W,Z against QCD radiation
it is crucial to get an accurate description of ptW

® |n the ptV description (V=W,Z) we find
* perturbative elements (factorization/renormalization/resummation scales, matching schemes)
* non-perturbative elements (e.g. intrinsic kt of the partons in the proton, part e.g. of the PS tune)
* PDFs (and their uncertainties)
» different contribution of heavy- vs light- flavors in the PDF to the ptV spectrum
All these elements are entangled.

Alessandro Vicini - University of Milano Milano, February | 1th 2015



Non-perturbative effects and the ptV spectrum

® the ptlep spectrum receives a very large contribution from the recoil of W,Z against QCD radiation
it is crucial to get an accurate description of ptW

® |n the ptV description (V=W,Z) we find
* perturbative elements (factorization/renormalization/resummation scales, matching schemes)
* non-perturbative elements (e.g. intrinsic kt of the partons in the proton, part e.g. of the PS tune)
* PDFs (and their uncertainties)
» different contribution of heavy- vs light- flavors in the PDF to the ptV spectrum
All these elements are entangled.

® The accurate ptZ measurement may constrain several parameters of the model-dependent part
(e.g. the PS tune) of the simulations
but
* the interplay between the various effects above is not trivial (a global analysis would be needed)

e the QCD scales can NOT be measured
the fit of the model dependent part depends on the QCD scales

* How accurate is the transfer of the ptZ description to the ptW simulation?
Are the non-perturbative parameters universal! phase-space independent!?

* the use of the ptZ information to improve the description of the ptVV spectrum

is equivalent to say that one measures a W/Z relation
Alessandro Vicini - University of Milano Milano, February | 1th 2015



DY W//Z ratios

since W and Z observables share several common (QCD) features
= convenient observables to extract MW are defines as ratio of W/Z quantities wrgiele, skeller, hep-phi9704419

plot by G. Ferrera, talk at GGl workshop Joint ATLAS+CMS+TH meeting on M_W
http://www.ggi fi.infn.it/talkfiles/slides/talk3553.pdf

1.2 I RN RRREN1AE1 L1111 Sy S sy o
B war | ratio of shapes ptW/ptZ
% NNLL — |
! 1.1 - 1 4 .
§N \\<\ L : NNLL perturbative uncertainty band very small:
R — | 2-5%for | <qT <2 GeV, [.5-2% for 2 < qT < 30 GeV.
= ] \ Non perturbative effects within 1% for 1.5 < qT <5 GeV
| LHC \/s=t|3 TeV M|STW20|08 |Q, INF’IMT vlarliations | - and neg||g|b|e for qT >5GeV.
0091 - 2 - I3IIII IIII5IIII IIII'?””””“;O - I20I - I30

qr (GeV)

A systematic study of the potential of W/Z ratios for an accurate MWV determination is in progress

The amount of information, of experimental input, relevant for the MW central value determination
is the same as in the case of W observables
The more symmetric treatment of W w.r.t. Z allows a discussion of systematic errors (e.g. pQCD)

which would be otherwise “frozen” in the steps |) extract from the Z and 2) input in the W simulation
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http://www.ggi.fi.infn.it/index.php?page=events.inc&id=168
http://www.ggi.fi.infn.it/index.php?page=events.inc&id=168
http://www.ggi.fi.infn.it/talkfiles/slides/talk3553.pdf
http://www.ggi.fi.infn.it/talkfiles/slides/talk3553.pdf

Feasibility of a MW measurement at the |0 MeV level

I“

It requires that several “minor” effects are under control

® impressive progress of MC generators, already available and with further developments,
both for pure QCD and QCDXEW corrections
= understanding the size of the impact on MW of several classes of available corrections is in

pr‘ogl’eSS (nOt tl"IVIa|) L.Barze, C.M.Carloni Calame, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini.AV, in progress

MC working group of the CERN EW-WG

= assessing the residual error due to missing higher order corrections is even less trivial

® a global improvement of PDFs will be made possible by the new LHC data

the very accurate ptZ measurement should allow a detailed Parton Shower tune;

e for the ptlep distr. of CC-DY alone, non-perturbative uncertainties could be very hard to beat;
= if W/Z ratios are less sensitive to all these effects, we could mitigate the bottleneck

are experimental ratios VW/Z as accurate as the individual observables?

for the MT of CC-DY distribution, much milder pQCD and non-pert. QCD effects

more problematic experimental reconstruction (pile-up?)
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mtop value and the stability of the EW vacuum

2 2
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mtop value and the stability of the EW vacuum

vV
‘ ,l'I
Intermediate scenario: /
|'|l
the potential remains bounded from below, x.f
f
but new local minima appear with a non-vanishing tunneling probability N\ ,fﬁ

two different alternatives:

* we could be living in a sufficiently long-lived (> age of the Universe)
metastable vacuum

* new physics appear to restore the shape of the potential
bounded from below

* first studies on the vacuum stability
Linde (76); Weinberg (76); Cabibbo, Maiani, Parisi, Petronzio (79); Hung (79); Lindner (86); Sher(89)

* two-loop effective potential
Ford, Jack, Jones 92,97; Martin (02)

* three-loop beta function
Mihaila, Salomon, Steinhauser (12), v. Ritbergen,Vermaseren, Larin (97); Czakon (05), Chetyrkin, Zoller (12, |3,); Bednyakov et al. (13)

* two-loop threshold corrections at the weak scale
Chetyrkin, Steinhauser (00); Melnikov, v. Ritbergen (00), Bezrukov, Kalmykov, Kniehl, Shaposhnikov (12), Buttazzo,Degrassi, Giardino, Giudice, Sala, Salvio, Strumia, (13)

Bezrukov et al. (12), DiVita et al. (12) DiVita, Degrassi, Elias-Miro, Espinosa, Giudice, Isisodri, Strumia, (12) Buttazzo,Degrassi,Giardino, Giudice, Sala, Salvio, Strumia, (13)
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mtop value and the stability of the EW vacuum

D.Buttazzo, G.Degrassi, P.Giardino, G.F.Giudice, FSala, A.Salvio, A.Strumia, arXiv:1307.3536
L T T T T ‘ T T T T
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mtop value, MWV and the stability of the EW vacuum

* The stability arguments indicates a preference for a low mtop value mtop = 172 GeV

* With such values, the MW prediction in the SM decreases w.r.t. its central value,
reaching a deviation of 20 from the world average
mtop=171.5 GeV would predict a too light MH value in the SM
* Low values are disfavored by the SM global EWV fit,
which prefers as indirect mtop ~ 173.5 (177.0) GeV

* The determination of mtop from multiparticle final states suffers, at present,
of some problems of conversion between:
-the parameter present in the MC (with LO matrix elements and no control on the
top mass renormalization) and fit to the data
-the renormalized quantities (pole mass, MSbar mass) used in theoretical studies

cfr S.Moch et al.,arXiv:1405.4781 S.Moch,arXiv:1408.6080

* The top MSbar mass, measured from the study of the total ttbar production xsec,

leads to a value which, converted into a pole mass, is “low”

mtop"MSbar = 162.3 £ 2.3 GeV — mtop_pole = 171.2 £ 2.4 GeV sMocharxiv:1408.6080
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Conclusions

* The theoretical prediction of MWV and the analysis of the EW vacuum stability

may offer insights about possible BSM signals and about the consistency of the SM

* The measurements of MW at the O(10 MeV) level and of mtop at the O(0.5 GeV) level

are very challenging

* in the MW case, a very long list of O(5 MeV) effects comes into the game
we need to understand new observables that help us to reduce some important systematic effects
plan a global improvement of PDFs
develop a systematic assessment of (PDF+Parton Shower) systematics

LHC has the potential to provide all the inputs needed to constrain the DY system and to allow

EWV precision tests
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