Plans for Top properties analyses @ Run II

MARINO ROMANO UNIVERSITY OF BOLOGNA & INFN

Introduction

Why top properties?

- Fundamental ingredient of the SM
 - Top quark mass
- Precision tests of SM predictions
 - Charge asymmetry
 - Spin correlations
- Can probe new physics
 - Anomalous couplings ($\rightarrow t\bar{t}V$)
 - New intermediate particles (anomalies in color flow)
 - FCNC
 - Baryon number violation

Run I analyses

- Published world class results:
 Top mass
- Charge asymmetry
- *t*t̄ spin correlations and top polarizations
- Top quark charge
- $\circ t\bar{t}\gamma e t\bar{t}V$ (conf notes)

Run I analyses

What can be improved?

 Most of the published results are extrapolations of the measured quantity in the fiducial region to a parton-level quantity in the full phase space

- "Parton" top not well defined theoretically
- Strong dependence on the underlying Monte Carlo simulation

• Go fiducial!

- Put the results in HepData with a Rivet analysis
 - Makes the paper more citable and easier to reinterpret

Run II analysis plans

- $t\bar{t} + heavy vector boson production$
 - Argonne/BNL/Duke, Bonn, Göttingen, Stockholm, Sussex
- Spin correlation
 - Birmingham
- Charge asymmetry (with boosted objects)
 - Mainz, Michigan
- Top mass
 - No definitive plan yet
 - Use established template method & investigate alternative ways (sigma(tt) dependence...)
- Color flow in $t\bar{t}$ pairs
 - Manchester

Marino Romano

No expression of interests from Italian groups

ttV in Run I

- Precision test of SM predictions
- Final states
 - ▶ $t\bar{t} \rightarrow ll$, *l*+jets, all hadronic
 - ► $Z \rightarrow ll, \nu\nu, q\bar{q}$
 - ► $W \rightarrow l\nu, q\bar{q}$

- Dilepton and trilepton analysis (ATLAS-CONF-2014-38)
 - Same sign di-muon: $t\bar{t}(\rightarrow \mu + jets)W(\rightarrow \mu\nu)$
 - ▶ Opposite sign dilepton: $t\bar{t}(\rightarrow l^{\pm}+jets)W(\rightarrow l^{\mp}\nu)$ and $t\bar{t}(\rightarrow all hadr)Z(\rightarrow ll)$
 - ▶ Trilepton: $t\bar{t}(\rightarrow ll)W(\rightarrow l\nu)$ and $t\bar{t}(\rightarrow l+jets)Z(\rightarrow ll)$
- ▶ 4-lepton analysis (ATLAS-COM-PHYS-2014-843): $t\bar{t}(\rightarrow ll)Z(\rightarrow ll)$

$t\bar{t}V$ in Run II

Effort has not yet started

Mostly busy with finalization of 8 TeV measurements

Channels of interest

- Dilepton opposite sign (Gottingen)
 - Use neural network
- Dilepton same sign (Argonne/Sydney/Duke)
 - Simultaneously fit of multi-dimensional distributions (e.g. E^{miss}_T - N_{jets} - N_{bjets}) with signal and background components (AIDA method)
 - Interest in measuring WZ/ZZ +HF cross sections with the AIDA method

ttV in Run II

Multi (3/4) leptons(Sussex, Bonnl, Stoccolma)

- Finalizing 4*l* 8 TeV analysis (expected sensitivity: 2.1σ)
- Data Driven background extimation feasible thanks to the higher statistics
 - Reduction of the WZ+jets systematic uncertainties
- →Expect ~5 σ for $t\bar{t}Z$ with 5 fb⁻¹
- ▶ MC studies for WZ+jets and $t\bar{t}V$
 - \triangleright *ttV*: aMC@NLO and Sherpa2
 - ▶ WZ+jets: Sherpa with MEPS@NLO

Spin correlation in Run I

 $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$

7 TeV analysis (Phys. Rev. D. 90, 112016 (2014)

Four observable used to extract the spin correlation from a binned likelihood fit of f_{SM} where $A_{measured} = f_{SM}A_{SM}$

• $\Delta \phi(ll)$ shows highest sensitivity

8 TeV analysis (Submitted to PRL)

Spin correlation extracted via a template fit on $\Delta \phi(ll)$ distribution

 $f_{SM} = 1.20 \pm 0.05(stat) \pm 0.13(syst)$

Most precise measurement to date

ATLAS		tt spin correlation measurements		
$\int Ldt = 4.6 \text{ fb}^{-1}, \sqrt{s}$	= 7 TeV		f _{SM} ± (sta	at) ± (syst)
Δφ (dilepton)			+ 1.19 ± 0.0	09 ± 0.18
Δφ (I+jets)		••		1 ± 0.22
S-ratio	.		0.87 ± 0.1	1 ± 0.14
cos(θ ₊) cos(θ ₋) helicity basis		•	0.75 ± 0.1	9 ± 0.23
cos(θ ₊) cos(θ ₋) maximal basis			0.83 ± 0.1	14 ± 0.18
0	0.5	1	1.5 Standard m	2 odel fraction

10

Spin correlation in Run II $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$

No big change in A from 8 to 13 TeV

Keep the analysis simple

- Dilepton channel
- Statistical uncertainty levels with 1/fb @13 TeV similar to full 7 TeV dataset

	$Data(\mathit{fb}^{-1})$	x-sec(<i>pb</i>)	Events
7 TeV	4.7	177.3	833,310
13 TeV	1.0	831.8	831,760

• Use $\Delta \phi(l, l)$

- Sensitive to $t\bar{t}$ spin correlation, without requiring full reconstruction
- Spin correlation varies with m_{tt}
 - Use m_{ll} as proxy for m_{tt}

Tt charge asymmetry in Run I $A_{c} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_{t}| - |y_{\bar{t}}|$

- Extensively measured @ 7 TeV
- All results obtained after unfolding to parton level
 - Dilepton channel (submitted to JHEP)
 - Simultaneous measurement of $A_C(tt)$ and $A_C(ll)$
 - Single lepton channel (JHEP02(2014)107)
 - Strong contributions by Udine/ICTP
 - ▶ W+jets and QCD multijet background with data-drive methods. → Standard in top WG
 - Combination with CMS (ATLAS-CONF-2014-012)
- Results in agreement with SM predictions
 - To understand the discrepancies in A_{FB} @ Tevatron Marino Romano

12

Tt charge asymmetry in Run II $A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_{t}| - |y_{\bar{t}}|$

- Interest shown for boosted analyses (Mainz, Michigan)
 - Combinations with resolved analyses could improve the precision
- <u>A_c at high m_{tt} particularly sensitive to new physics</u>
- Run II ideal environment for boosted analyses
 - Expected 7x more boosted tops (m_{tt} >1TeV) \swarrow with 5/fb

Interest shown also for $A_C(tl)$ with a high p_T hadronically decaying top (arXiv:1401.2443)

$$A_{C}^{tl} = \frac{N(\Delta|y|^{tl} > 0) - N(\Delta|y|^{tl} < 0)}{N(\Delta|y|^{tl} > 0) + N(\Delta|y|^{tl} < 0)}$$

No ambiguity due to the z-component of the neutrino

0.6 β___>**0.6** ATLAS s= 7 TeV Data L dt = 4.7 fb⁻¹ Axialuon m=300 GeV Axigluon m=7000 GeV 0.3 0.2 0.1 -0.⁻ 500 600 700 800 300 400 m, [GeV]

10/02/2015

Top Mass

Extensively measured in Run I

- Effort still ongoing
- ATLAS 7 TeV best measurement $\delta m_{top} = 0.88\%$
- Combination close to circulation ($\delta m_{top} = 0.53\%$)

For 13 TeV plan to use established template method

Performance will depend on the understanding of input objects

Alternative top mass extractions become viable

- Exploit dependence on σ(tt) (probably first result for Run II)
- Use $t\bar{t}$ +1jet, (recently 7 TeV approved analysis)
- Lepton p_T , b-hadron decay lenght, ...

Marino Romano

Not for early Run II

Color flow in Run I ATL-COM-PHYS-2014-767

Analysis ongoing on 8 TeV

Single lepton channel

Goal: unfold pull angle between the two jets coming from a W and compare it to different color flow models

Where *i* runs over the subcomponents of J
and
$$r_i$$
 is the *i*-J vector in the $y - \phi$ plane

Pull vector of a jet J is defined as:

Pull angle
$$\theta_P(J_1, J_2)$$
:

angle between $\vec{v}(J_1)$ and J_1J_2

Marino Romano

 θ_P Pull Angle • Constituent of J_1 (size weighted by p_T) $\Delta y = y - y_{J_1}$

10/02/2015

15

Color flow in Run II

- Manchester interested in (continuing) the investigation of color flow
 - Analysis will follow a similar strategy to the current 8 TeV measurement
 - Present unfolded distributions (like jet pull), using the full 2015 dataset
 - Not an early result (Moriond 2016 optimistic)

Conclusions

- In general, current focus of top properties groups is on finishing the measurements with Run I data
- General plans and expectations for Run II analyses
 - Aim for a first $t\bar{t}V$ observation with 5/fb
 - Charge asymmetry with boosted final states: 7x more statistics respect to 7 TeV analysis with 5/fb
 - Competitive spin correlation measurement with ~1/fb
 - First top mass measurement expected to extracted from σ_{tt}
- Examples of interesting but yet uncovered topics:
 - \blacktriangleright $t\bar{t}\gamma$
 - Baryon number violation

As for today, no expression of interests from Italian groups Plenty of topics in Top Properties where Italian groups can give important Contributions during Run II 10/02/2015