

X Workshop ATLAS Italia Milano, 10-12 February 2015

Top pair and single top quark production cross section

Valerio Scarfone INFN and Calabria Univ.

Outline

Status of the art and perspective for

Top quark pair production

Single top quark production

Why top physics at LHC ?

Tevatron: $\sigma_{tt} \sim 7 \text{ pb} (\sim 10^4 \text{ events})$ *LHC is a Top factory* LHC@8TeV: $\sigma_{tt} \sim 240 \text{ pb} (\sim 5x10^6 \text{ events})$ LHC@14TeV: $\sigma_{tt} \sim 953.6 \text{ pb}$ (~ 95x10⁶ expected events)

Top physics at LHC moved to precision measurements

- Precision tests of QCD with available NNLO predictions
- Precision measurements can be included within DGLAP fits
- Modeling of SM tt background for BSM physics searches

Run 2 and beyond

Top studies at Run2

- \rightarrow All searches (FCNC decays, tt resonances, top partners, ...)
- \rightarrow Top properties (Top quark mass, charge asimmetry, Yukawa coupling,...)
- \rightarrow Differential cross section measurements (resolved and boosted topology)
- → tīV, tīH

Top pair production at LHC

Tevatron 2 TeV LHC 8 TeV LHC 14 TeV 10% gg 85% 90% 10% 90% 15% qq

arXiv:1303.6254

NNLO+NNLL Accuracy

$$\begin{split} \sigma_{t\bar{t}, \ 8\text{TeV}} &= 245.8 \ ^{+6.2}_{-8.4} (\text{scales}) \ ^{+6.2}_{-6.4} (\text{pdfs}) \\ \frac{\delta \sigma_{t\bar{t}}}{\sigma_{t\bar{t}}} &\sim 4 \ \% \end{split}$$

ī

g

0000000000000

NLO tt differential cross section

Top quark signatures

Jet Leptonic Top Hadronic Top Jet Top Pair Branching Fractions Final state signatures : "alljets" 46% *dilepton* (low prob. & low bkg) *l+jets* (compromise between prob. & bkg) τ+jets 15% *fully hadronic* (large prob. & large bkg) Main background sources **μ+jets** 15%

e+jets 15%

"dileptons"

"lepton+jets"

- Full hadronic: QCD
- Single lepton: W+jets, fake leptons, single top
- Dilepton: Z,y*+jets, fake leptons

Total tt cross section

Latest NNLO+NNLL theoretical predictions (Czakon, Fiedler, Mitov 2013) arXiv:1303.6254

Collider	$\sigma_{\rm tot} ~[{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8\%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	$+16.2(1.7\%) \\ -17.8(1.9\%)$

Good agreement.

Comparable theoretical and experimental uncertainties.

√*s* [TeV]

Total tt cross section - Comparison with CMS

8

Normalized differential cross sections

Lepton+jets @ 7TeV *2011 data* $\int Ldt = 4.6 \text{ fb}^{-1}$

POWHEG+HERWIG provides the best description of the distribution over the full range

Dilepton (eµ with b-tag) differential distributions

Good agreement between theory and data

PDFs

Recent and forthcoming $t\bar{t}$ cross section measurements have the potential to improve the determination of the PDFs

- → Differential measurements
- → At least NLO predictions (MCFM)
- → Forthcoming NNLO predictions

Theory/data in better agreement using HERAPDF 1.5

What can we do with early Run2 data?

- Focus on di-lepton $e-\mu$ (with b-tagging)
 - Already used for precise measurements at 7 and 8 TeV
 - Large cross section (σ ≈830 pb at 13 TeV) means we can do a lot already with ≤ 1 fb-1
 - Initial sample with 50 ns bunch spacing and low trigger thresholds will be very useful
- Early cross section measurements
 - I+jets final state:
 - more complex and harder systematics
 - but important to study even for potential BSM effects
 - Di-lepton with same lepton flavour (ee/ $\mu\mu$)
 - Here we may start to look at differential distributions
- Ratios of measured cross sections either between different processes or between same processes at different energies (8 and 13 TeV)

tt cross section: general considerations for Run2

From the ATLAS Nov 2014 Physics Workshop "Ready for Run-2"

- The luminosity uncertainty will be the dominant systematics
- Lepton efficiencies should be about 2-3%
- JES uncertainties could become significant
- ${\mbox{\circ}}$ Single lepton triggers with low $p_{_{T}}$ thresholds are strongly preferred
- The number of the recommended systematic variations by the CP groups is considered too large

Run2 – Trigger issues

• For run-2

Single lepton triggers $_{e24_tight_EM20VHI}$ and $_{mu20_iloose_MU15}$ should be able to use, with offline p_T >25 GeV (maybe slightly higher for e)

- Beyond 1 fb⁻¹ will have to increase offline $p_{\scriptscriptstyle T}$ cuts or move to dilepton triggers
- If moving to p_{τ} > 30 GeV removes 20% of acceptance Possible increase in extrapolation uncertainty for inclusive cross section

Single top production at LHC

Electroweak single top production at LHC is lower than the *strong* top pair production

Why Single Top studies ?

- Relevant test of the SM
- Sensitive to the *Wtb vertex* in different ways
- Non-standard couplings → *new physics*
- Verify the unitarity of the CKM matrix
- Constraints on the *b-quark* PDF
- Background in several new physics scenarios

Total single top cross section

Latest ATLAS results at 8TeV : $\sigma_{t-channel} = 82.6 \pm 1.2 \text{ (stat)} \pm 11.4 \text{ (syst)} \pm 3.1 \text{ (PDF)} \pm 2.3 \text{ (lumi) pb}$ $\sigma_{wt-channel} = 27.2 \pm 5.8 \text{ pb} \rightarrow 4.2 \sigma \text{ evidence with } 4.0 \sigma \text{ expected for SM}$

At 7TeV:

Observed (expected) upper limit at 95% CL on $\sigma_{s-channel}$ < 26.5 (20.5) pb

General considerations on single top xsec measurements for Run2

• If the systematic uncertainties due to JES, MET and b-tagging will be less than a factor of 2 worse than those of Run-1, the measurements are expected to be feasible

- A calibration of forward jets is required (up to η of 4.5, but could also afford to cut at around 3.5), which is currently the dominant uncertainty in the t-channel
- A b-tagger optimised for c-jet rejection is needed
- Low p_{τ} single lepton triggers are needed

Conclusions

- Results at 7 and 8 TeV already show how rich is the Top Physics programme at the LHC
- Several measurements in top physics will profit from the increased top production cross-section at 14 TeV and a larger integrated luminosity
- Better determination of PDF's with future NNLO differential predictions
- Continue to search for BSM Physics

Backup slides

t-channel single top: THE GOLDEN channel

- Inclusive, differential and fiducial xs measurements
- Ratio $R_t = \sigma(tq)/\sigma(tq)$
- Top and W polarization
- Anomalous couplings
- BSM searches

Normalized diff. cross section – Comparison with CMS

ATLAS and CMS results are generally consistent with SM predictions

MC tend to overestimate the measured cross section at large transverse momentum for ATLAS

POWHEG+HERWIG provides the best description of the distribution over the full range

tt differential cross section

Event selection + tt kinematic reconstruction

Differential $t\bar{t}$ cross sections

- Normalised to in-situ measured σ
- 'Visible' or extrapolated to full phase space
- Compare to theory predictions

Bin-wise cross section measurement

- Subtract background
- Unfolding: correct for detector effects and acceptance

$$\frac{1}{\sigma} \frac{d\sigma^{i}}{d\mathbf{X}} = \frac{1}{\sigma} \frac{N_{\text{Data}}^{i} - N_{\text{BG}}^{i}}{\Delta_{\mathbf{X}}^{i} \epsilon^{i} L}$$

Migration matrix

- Why differential measurements ?
- → test/tune tt production models in different phase space regions
- \rightarrow look for discrepancies wrt SM predictions
- \rightarrow measurements to include in PDF fits,
- providing info about PDFs themselves
- \rightarrow background for BSM searches