SUSY at Run 2

Roberto Franceschini (CERN)

February 12th 10th ATLAS Italy Workshop on Physics and Upgrades

many thanks to Giacomo Polesello for a number of insight

Simplified (?) Models? ... Yes, please

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

ATLAS	Preliminar
-------	------------

AILAD Preliminary $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	Mass limit		Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell v / v v) \tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.7 20.3 4.8 4.8 5.8 10.5	\tilde{q}, \tilde{g} \tilde{g} 1.1 TeV \tilde{g} 1.1 TeV \tilde{g} 1.3 TeV \tilde{g} 1.12 TeV \tilde{g} 1.12 TeV \tilde{g} 1.24 TeV \tilde{g} 1.24 TeV \tilde{g} 619 GeV \tilde{g} 619 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV \tilde{g} 645 GeV	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ V $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $\tan\beta < 15$ eV $\tan\beta > 18$ V $m(\tilde{\chi}_{1}^{0})>50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>220 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>220 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})>10^{-4} \text{ eV}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 1211.1167 ATLAS-CONF-2012-144 1211.1167
ğ med.	$ \begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{+} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV ğ 1.1 TeV ğ 1.34 Te ğ 1.3 Te	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) < 600 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 350 \ \mathrm{GeV} \\ \mathbf{V} \qquad m(\tilde{\chi}_{1}^{0}) < 400 \ \mathrm{GeV} \\ \mathbf{V} \qquad m(\tilde{\chi}_{1}^{0}) < 300 \ \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{natural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split}$	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) < 90 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{\pm}) = 2 \ m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = 55 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = m(\tilde{\imath}_{1}) \cdot m(W) \cdot 50 \ \mathrm{GeV}, \ m(\tilde{\imath}_{1}) < < m(\tilde{\chi}_{1}^{\pm}) \\ m(\tilde{\chi}_{1}^{0}) = 1 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 200 \ \mathrm{GeV}, \ m(\tilde{\chi}_{1}^{\pm}) \cdot m(\tilde{\chi}_{1}^{0}) = 5 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \ \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \ \mathrm{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$\begin{split} \tilde{\ell}_{\text{L,R}} \tilde{\ell}_{\text{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\text{L}} \nu \tilde{\ell}_{\text{L}} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\text{L}} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{split}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = \! 0 \; GeV, \; m(\tilde{\tau}, \tilde{\nu}) \! = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; m(\tilde{\ell}, \tilde{\nu}) \! = \! 0.5(m(\tilde{\chi}_{1}^{\pm}) \! + \! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; sleptons \ decoupled \\ m(\tilde{\chi}_{1}^{\pm}) \! = \! m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) \! = \! 0, \; sleptons \ decoupled \end{array}$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-ilved particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0)\text{=}160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm})\text{=}0.2 \; ns \\ & m(\tilde{\chi}_1^0)\text{=}100 \; GeV, \; 10 \; \mu s{<}\tau(\tilde{g}){<}1000 \; s \\ & 10{<}tan\beta{<}50 \\ & 0.4{<}\tau(\tilde{\chi}_1^0){<}2 \; ns \\ & 1.5 \; {<}c\tau{<}156 \; mm, \; BR(\mu)\text{=}1, \; m(\tilde{\chi}_1^0)\text{=}108 \; GeV \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \end{array} $	$ \begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array} $	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_1^0)>300 \text{ GeV}, \lambda_{121}>0$ $m(\tilde{\chi}_1^0)>80 \text{ GeV}, \lambda_{133}>0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , µ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80{ m GeV},$ limit of ${<}687{ m GeV}$ for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7$ TeV full data	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} =$ full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

To a very large extent this was the Search for supersymmetric dark matter in the decay of colored superpartners

some of them talk to the issue mn=126 GeV >> MSSM

Run2 = Subtle SUSY

Run2 = Subtle SUSY

- low cross-section
- low acceptance
- low S/B

- electroweak
- soft objects
- new physics in precision SM

Precision SUSY-top

light stop effects on top cross-section

effects on top mass? 1410.7025

Precision SUSY-top

light stop effects on $\Delta \phi(\ell \ell)$

unfolded precision distributions?

electroweak signals

lll+X ll+h,Z,γ mono-X (X=γ,j,Z,h,t,b, ...) stub-tracks

Dark Matter Searches will progress in the same time-scale

SUSY as a "signatures generator"

Let it go ...

$pp \to SUSY \to (\chi\chi) + SM$

Let it go ...

Light is difficult $\tilde{t} \rightarrow jj$

signature relevant for many new physics scenarios

proof of βoosted analyses for Run2 boosted analyses can be very inclusive

mounting importance (and power) of boosted analyses

exclude well below the target model

Boosted Regime at Run2

A few highlights to cover the low mass cases

Lots of exotica captured by this same signature exclude well below the target model

Heavy flavor tags at Run2

 $pp \rightarrow \widetilde{a}\widetilde{a} \rightarrow 6q$ BB(c)=50% $\int L dt \sim 20.3 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}$

Presentation of the results

goal is to make the results more long-lived

- Recast-friendly
- <u>Fully</u> reproducible
- largely digitized (HepData)

Presentation of the results

goal is to make the results more long-lived

- Detailed Background efficiency and its <u>uncertainty</u>
- Detailed Signal efficiency and its <u>uncertainty</u>

Compressed Status

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2013-02

Presentation of the results

goal is to make the results more long-lived

- Detailed Background efficiency and its **uncertainty**
- Detailed Signal efficiency and its <u>uncertainty</u>
- MCs have tons of parameters → <u>input cards</u>?
 (A, A×ε, ... become much more useful)

Summary Plots

← → C	fi .	🗋 🗋 dmtools.brown	.edu:8080/	plots/	/2933/edit
-------	------	-------------------	------------	--------	------------

Edi		80/plots/2933/edit	6
	ting plot		
Plot na	ame:		
New			
		axes settings must be integers	
x rang	ge (WIMP mass)	lower bound: 1 to upper bound: 10000 GeV/c^2	
y ranç	ge (cross-section)	smallest c-s: 10^-54 to largest c-s: 10^-26 cm^2 \$	
Save	Result	Reference Plot appearance	
~	COUPP 2012 SI, flat	Behnke et al, Phys. Rev. D 86, 052001 (2012),	alı
×	efficiency model	arxiv:1204.3094	ICK.
	Edelweiss II, SI, 384	kg- Phys.Lett. B702 (2011) 329-335, [solid \$] [bla	
×	dave ficel (2011)	Viv:1102.4070	ck
×	days, final (2011)	"First Science Results from the LUX Dark Matter	ick
×	days, final (2011) LUX (2014/15) 300d projection (SI, 90% (arXiv:1103.4070 "First Science Results from the LUX Dark Matter CL Experiment" Talk at SURF Gaitskell/McKinsey, solid \$	ick

Conclusions

- Simplified models are still the way to go
- Colored landscape is actually black
- Push on EW (mono-X, stub-tracks and alike, soft leptons, ...)
- Heavy flavor, resonance tagging
- Precision SM ↔ "low pT" BSM

Conclusions (2)

how to extend the life-time of the results

In my <u>opinion</u>:

- signal and background simulation should be fully reproducible → publish cards for the codes?
 (truly gives meaning to publish A, A×ε, ...)
- exclude well beyond the "target model"
- large body of results, mostly organized by Twiki (by hand?) (limited number of <u>static</u> summary plots?)
- more data on HEPDATA (for measurements and for searches)

Extra

