

Beyond the Standard Model Physics with E_T^{miss} + Photons

Maria Giulia Ratti, Stefano Manzoni

On behalf of the Milano Mono-Photon and Di-Photon groups

X ATLAS ITALIA WORKSHOP - MILANO

FEBRUARY 12^{TH} , 2015

BSM with E_T^{miss} + Photons

Outline

Motivation of E_T^{miss} + Photons Searches Run 1 Analyses and Results Status and plans for Run 2

Motivation for E_T^{miss} + Photons searches

E_T^{miss} + Photons signatures can probe many BSM scenarios in a unique way: Dark Matter (DM), SUSY, Large Extra Dimensions.

An excess of events with E_{T}^{miss} + Photons would signal the presence of **new undetected particles** in ATLAS in a fairly **model-independent** fashion:

- High E_{T}^{miss} = an imbalance in the transverse plane that signals the presence of undetected particles
- High-p_T Photons = extremely clean taggers or

directly involved in the new physic process searched for

Analyses covered in Italy in E_T^{miss} + Photons searches (Cut&Count) by the Milano Group in Run 2:

• Mono-Photon + E_T^{miss}

EXOTICS

- Di-photon + E_T^{miss}
- SUSY

=> Some common Backgrounds and Strategies

People Involved:

4 staff, 1 post-doc, 2 PhD students, 1 Master Student Donatella Cavalli, Leonardo Carminati, Tommaso Lari, Stefano Manzoni, Silvia Resconi, Maria Giulia Ratti, Ruggero Turra, Giacomo Zecchinelli

Display of a candidate mono-photon event one photon of $p_T = 449.7 \text{ GeV } E_T^{miss} = 446.9 \text{ GeV}$ $\Delta \phi(E_T^{miss}, \gamma) \approx \pi$

Outline

Motivation of E_T^{miss} + Photons Searches **Run 1 Analyses and Results** Status and plans for Run 2

Run 1 Papers

Mono-Photon 8 TeV Paper:

Phys. Rev. D 91, 012008 (2015) : http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.012008

Search for new phenomena with the ATLAS detector in monophoton events from proton-proton collisions at $\sqrt{s} = 8$ TeV

Leonardo Carminati¹, Donatella Cavalli¹, Marie-Helene Genest², Valerio Ippolito³, Lashkar Kashif⁴, Andrew Nelson⁵, Marta Perego¹, Caterina Pizio¹, Maria Giulia Ratti¹, Silvia Resconi¹, Chase Shimmin⁵, Fuquan Wang⁴, Daniel Whiteson⁵, Mengqing Wu², Sau Lan Wu⁴, Ning Zhou⁵

Di-Photon CONF with 8 TeV results:

Search for Diphoton Events with Large Missing Transverse Momentum in 8 TeV pp Collision Data with the ATLAS Detector

ATLAS-CONF-2014-001, http://cds.cern.ch/record/1641169

Combination Paper - SUSY signatures with photons (on-going):

Combination of di-photon, photon+lepton, photon+b, photon+jet Run 1 Results

Other analyses with similar signatures:

- Search for Higgs boson decays to neutralinos and gravitino: <u>https://cds.cern.ch/record/1742700/</u> (not public yet)
- Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs Boson: <u>http://arxiv.org/abs/1501.07110</u>

¹Milan ²LPSC Grenoble ³Harvard ⁴Wisconsin ⁵UCI

Contact Editor of the Paper

Mono-Photons in Run 1: Signals and Backgrounds

SIGNAL: Dark Matter WIMP pairs xx with ISR Photon

What we look for: = High E_T^{miss} recoiling back-to-back against one photon

How it is described:

Effective Field Theory approach

Interaction between WIMPs and SM particles is described effectively, Fermi-like: the mediator is integrated out

PRO: production cross section only depends on m_y and mediator mass

CON: limited validity regime

Simplified Models approach

Explicit integration of the mediator

- PRO: not limited by any validity regime
- CON: cross section depends on more parameters (width of mediator and coupling)

Standard Model BACKGROUNDS

Mono-Photons in Run 1: Analysis

Signal Region (SR)

- Preselections: GRLs, Good Vertex, data quality, jet cleaning, Trigger E_T^{miss} > 80 GeV
- E_T^{miss}>150 GeV
- at least one photon with p_T > 125 GeV
- well-separated objects: Δφ(γ, E_T^{miss}) > 0.4
- leading photon "tight", isolated, $|\eta^{\gamma}| < 1.37$
- at most one jet $p_T > 30 \text{GeV}, \Delta \phi(\text{jet}, E_T^{\text{miss}}) > 0.4$
- Veto on electrons and muons

Control Regions (CRs)

- keep the same cuts as SR
- revert one or more cuts at a time to define regions enriched in a particular source of background

Two k-factors (k_w , k_z) are determined from data/MC ratios in the CRs, which normalize the MC yields in the SR:

$$N_{\scriptscriptstyle SR} = N_{\scriptscriptstyle SR}^{\scriptscriptstyle MC} \cdot k$$

one control region is designed for W+ γ estimation

- \rightarrow two control regions are designed for the main background Z+ γ
- \rightarrow 2 μ and 2ele control regions alone have low statistics
- \rightarrow systematic uncertainties can be correlated among CRs and SR

BSM with E_T^{miss} + Photons

Mono-Photons in Run 1: Analysis

Signal Region (SR)

- Preselections: GRLs, Good Vertex, data quality, jet cleaning, Trigger E_T^{miss} > 80 GeV
- E_T^{miss}>150 GeV
- at least one photon with p_T > 125 GeV
- well-separated objects: Δφ(γ, E_T^{miss}) > 0.4
- leading photon "tight", isolated
- at most one jet p_T>30GeV, Δφ(jet,E_T^{miss}) > 0.4
- Veto on electrons and muons

Control Regions (CRs)

- keep the same cuts as SR
- revert one or more cuts at a time to define regions enriched in a particular source of background

Jets Faking Photons

Estimate contribution of **fake photons originated by jets** that pass the identification and isolation . criteria of the photon with an ABCD method: N_D

$$N_A^{bkg} = N_B \frac{N_D}{N_C}$$

Electrons Faking Photons

Estimate contribution of **electrons reconstructed as photons in SR**:

- **1. Mono-electron CR:** require an isolated tight++ electron of $p_T > 125$ GeV instead of a photon
- 2. EFR (electron fake rate) with a tag&probe method:
 - tag electron (pT>20 GeV) and probe photon OR electron (pT>125 GeV)
 - invariant mass of the two to be compatible with the Z mass
 - EFR = ratio of number of probe photons and probe electrons

Mono-Photons in Run 1: Results

Simultaneous fit in lepton CRs and SRs:

$$\begin{split} L_{reg}[\mu \mid N_{obs}] &= Poiss(N_{reg}^{obs} \mid \mu \cdot N_{reg}^{sig} + \\ &+ k_Z \cdot N_{reg}^{Z\gamma} + k_W \cdot N_{reg}^{W\gamma} + N_{reg}^{other}) \end{split}$$

No deviation was found from Standard Model predictions

Results interpreted in terms of **exclusion limits** of WIMP-nucleon cross section vs WIMP mass m_y

- ⇒ can be directly compared to direct and indirect searches of Dark Matter
- ⇒ different sensitivities for spin-independent (D5 operator)/dependent (D9 operator) interaction between SM and DM

Good sensitivity to low WIMP mass, where direct experiments are not sensitive

MIND: more results for DM in simplified models and SUSY and LED interpretations in the paper

Process	Event yield (SR)	$ \begin{array}{c} & & \\ & & $
$ \frac{Z(\rightarrow \nu\nu) + \gamma}{W(\rightarrow \ell\nu) + \gamma} \\ \frac{W/Z + \text{jet}, t\bar{t}, \text{ diboson}}{Z(\rightarrow \ell\ell) + \gamma} \\ \frac{\gamma + \text{jet}}{\gamma + \text{jet}} $	$\begin{array}{c} 389\pm 36\pm 10\\ 82.5\pm 5.3\pm 3.4\\ 83\pm 2\pm 28\\ 2.0\pm 0.2\pm 0.6\\ 0.4\substack{+0.3\\-0.4} \end{array}$	$\begin{array}{c} \gamma + W(X + iet, top, diboson \\ \gamma + Z(\rightarrow li) \\ \gamma + iet \\ \gamma + iet \\ \gamma + Z(\rightarrow li) \\ \gamma + iet \\$
Total background Data	$\begin{array}{c} 557\pm 36\pm 27\\ 521\end{array}$	Main 1.5 Beg 0.5 150 200 250 300 350 400 450 500 50 Emiss GeV GeV 150 200 250 300 350 400 450 500 50

Plots from Phys. Rev. D 91, 012008 (2015)

Di-Photons in Run 1: *Signals and Backgrounds*

SIGNAL: SUSY in GMSB models

Search for a signal from **GMSB** models

- (Gauge-Mediated Supersymmetry Breaking):
 - neutralino (NLSP) promptly decaying in γ + Gravitino (LSP)

Two processes are identified with $\gamma \gamma + E_T^{miss}$ in the final state :

- → Strong production: gluinos -> neutralinos + jets -> photons+Gravitinos+jets
- → Electroweak production: neutralinos are produced via wino triplet

The mass of the neutralino is treated as a free parameter, and varied between 50 GeV and the mass of the gluino/wino

Short-lived neutralino is considered, prompt decay

Standard Model BACKGROUNDS

- **QCD background**, instrumental E_T^{miss} SM diphoton, multijet, γ +jet \rightarrow data-driven
- **EW background**: genuine E_T^{miss} V+ γ \rightarrow data-driven

- Irreducible background
 - W(->lv)+γγ Z(->νν)+γγ
- \rightarrow data/MC ratio \rightarrow pure MC

Di-Photons in Run 1: Analysis

Event selection

- Two tight photons with $p_T > 75 \text{ GeV}$
- Event Cleaning (jet cleaning, cosmic muon cleaning)

Inclusive signature: no explicit requests on jets, leptons

Five Signal Regions optimized using:

 E_T^{miss} , $\Delta \phi(\gamma, E_T^{miss})$, $\Delta \phi(jet, E_T^{miss})$ H_T = total transverse energy of all visible objects, expected to be large for strong production

 M_{eff} = scalar sum of H_T and E_T^{miss}

- SP1, SP2 for Strong Production
- WP1, WP2 for Electroweak Production
- MIS, Model Indipendent

				5	
	SP1	SP2	WP1	WP2	MIS
$\Delta \phi_{\gamma}^{\min} >$	0.5	0.0	0.5	0.0	0.0
$\Delta \phi_{\rm jet}^{\rm min} >$	0.5	0.5	0.5	0.5	0.5
$M_{\text{eff}} > (H_{\text{T}} >) (\text{GeV})$	1500	1800	(400)	(600)	0
$E_{\rm T}^{\rm miss} > ({\rm GeV})$	250	150	200	150	250

Di-Photons in Run 1: *Results*

Background	SP1	SP2	WP1	WP2	MIS
QCD	$0.00\substack{+0.20 \\ -0.00}$	$0.22^{+0.53}_{-0.22}$	0.29 ± 0.29	0.89 ± 0.60	0.73 ± 0.53
Electroweak	< 0.02	0.02 ± 0.02	0.15 ± 0.07	0.67 ± 0.22	0.24 ± 0.10
$W(\rightarrow \ell \nu) + \gamma \gamma$	0.03 ± 0.02	0.02 ± 0.01	0.44 ± 0.18	0.74 ± 0.27	0.47 ± 0.19
$Z(\to \nu\bar\nu) + \gamma\gamma$	< 0.01	< 0.01	0.13 ± 0.07	0.08 ± 0.04	0.15 ± 0.08
Total	$0.03^{+0.20}_{-0.02}$	$0.26^{+0.53}_{-0.22}$	1.01 ± 0.36	2.38 ± 0.69	1.59 ± 0.58
Observed events	0	0	1	5	2

- No statistically significant deviation from the SM is observed
- SRs have very low background
- For each signal region 95% CL lower limit is set on the visible cross section:
 - → SP1 (SP2) 0.15 (0.14) fb
 - \rightarrow WP1 (WP2) 0.19 (0.41) fb
 - → MIS 0.23 fb
- 95% CL lower limits (-1 sigma) are set on
 - → **Gluino mass** at 1280 GeV
 - → Wino mass at 570 GeV

Outline

Motivation of E_T^{miss} + Photons Searches Run 1 Analyses and Results Status and plans for Run 2

BSM with E_T^{miss} + Photons

Towards Run 2: Challenges and Strategies

Challenges: deal with 13 TeV conditions

- Higher center-of-mass energy \rightarrow enhanced signal sensitivity
- More dense **PILE-UP** conditions → more difficult **object reconstruction**

Reconstruction of Photons:

- The new std calibration will be based on Monte Carlo calibration tuned using multivariate techniques
- Photon reconstruction has changed
- New photon ID is being tuned
- Pre-recommendations by extrapolation from Run 1 data (similar or conservative uncertainties)
- Use of first 1 fb⁻¹ of 50 ns to update recommendations
- Expected similar to Run 1 perfomance
- See more in Ruggero Turra's talk <u>https://indico.cern.ch/event/371430/session/6/contribution/15/</u> <u>material/slides/0.pdf</u>

Reconstruction of E_T^{miss} and Pile-Up impact

- E_T^{miss} will be rebuilt for each analysis in order to accomodate for the various object selections see more in Marianna Testa's talk <u>https://indico.cern.ch/event/371430/session/6/contribution/19/</u> material/slides/0.pdf
- Pile-Up will mostly impact on jets and Soft Term
 - Calorimeter based Soft Term gets worse at 13 TeV
 - Track based Soft Term shows a better and more stable performance going to 13 TeV

Strategies

- Harmonised objects will be used in Run 2 analyses
- Robust cut & count analyses: start with Run 1 analysis strategy, use common analysis tools
- keep the analysis as model-independent as possible with single SR for early data
- Use multiple SRs optimized for different models when more data becomes available

Mono-Photons in Run 2: Sensitivity

Study the analysis sensitivity at 13 TeV

First studies based on PDF reweighting (13 TeV MC samples not yet available): repeat analysis at 8 TeV and scale the event yields by the ratio $\sigma_{13TeV}/\sigma_{8TeV}$

- → Backrounds: all scaled by the ratio of the cross sections of the main process $Z(\rightarrow VV) + \gamma \sigma_{13TeV}/\sigma_{8TeV} \approx 2$,
- → Signals: 2 signal points for EFT Dark Matter $\sigma_{13TeV} / \sigma_{8TeV} \approx 4-6$

Yields in Signal Region for total background and two benchmark signal points, same cuts as in 8 TeV, same systematics

Process	8 TeV, 20.3 fb ⁻¹	13 TeV, 5 fb ⁻¹	13 TeV, 10 fb ⁻¹
Background	557	290	581
± stat ± syst	± 36 ± 27	± 26 ± 14	± 36 ± 28
D5, 50 GeV	20.7	26.7	53.3
D5, 400 GeV	12.3	21.2	42.4

Lower Limits on M_{*} (=suppression scale of the theory) for two benckmark signal points

Process	8 TeV, 20.3 fb ⁻¹	13 TeV, 5 fb ⁻¹	13 TeV, 10 fb ⁻¹
D5, 50 GeV	700 GeV	800 GeV	854 GeV
D5, 400 GeV	614 GeV	755 GeV	806 GeV

With 1-2 fb⁻¹ the analysis can compete with 8 TeV but in a model dependent way: required luminosity is 1.72 fb⁻¹ for D5 50 GeV, 0.96 fb⁻¹ for D5 400 GeV.

 \rightarrow we aim at 2-5 fb⁻¹ publication

For the 5 fb⁻¹ case, systematic tolerance is studied by scaling the systematics. With as twice as bad systematic error, sensitivity is still better than 8 TeV. Analysis dominated by **statistical error**

Exotic Analysis Walk-Through took place in Geneva last week (4-6 February) aimed at preparing for early Run 2 analysis. Some important items discussed for the Mono-Photon analysis:

- 1. Signal Samples DC14: full-simulation samples requested for EFT and Simplified Models, in production, close to finish MC15: a standardized set of simplified models being discussed in ATLAS+CMS Dark Matter Forum.
- 2. Background Samples DC14: main background requested, just becoming available. MC15: backgrounds will be requested with revisited filters.
- **3. Derivation:** EXOT6 derivation framework in common with gamma +jet analysis is in place, smart slimming implemented, tests done for interface with xAOD analysis
- Trigger: move from E_T^{miss} trigger to photon trigger, based on Run 1 studies
 - \rightarrow photon trigger more efficient and with sharper turn-on
 - \rightarrow photon trigger less sensitive to pile-up
 - \rightarrow possibility to use a single trigger for the entire analysis
- 5. xAOD analysis being implemented

Tools: common choices with other mono-X analyses, SUSYTools and HistFitter

Analysis: optimization of analysis cuts (jet/gamma pT thresholds, MET)

6. Institutes: ANL, Harvard, LPSC Grenoble, Milano, Wisconsin

Mono-Photons in Run 2: Unblinding strategy

Run 1

In 8 TeV analysis, a Validation Region (VR) was used for checking the consistency and robustness of the background estimation techniques, before unblinding the SR.

- \rightarrow Optimize a VR at low E_T^{miss} such that:
 - 1. contamination of signal is low
 - 2. background composition similar to SR
 - 3. statistics is comparable to SR
- → Repeat the entire background estimation using the corresponding CRs at low E_T^{miss}
- → Check the data/MC ratio in the VR: if it is 1 within the uncertainties
- → Proceed to unblind the SR (otherwise re-optimize the VR)

Run 2

For Run 2 several possibilities are being discussed:

- \rightarrow same strategy as run 1
- \rightarrow use as VR either 50 ns data
- → use as VR first fb⁻¹ of 25 ns data

In both last two cases there is less sensitivity that 8 TeV

Run 1 results in the VR

Sensitivity at 13 TeV

Considering a single signal point, gluino with mass 1400 GeV, just above the 8 TeV exclusion limit:

- Signal: $\sigma(13\text{TeV})/\sigma(8\text{TeV}) \approx 30$
- Background: $\sigma(13\text{TeV})/\sigma(8\text{TeV}) \approx 2-3$
- S/VB ≈ 20

This search will reach the sensitivity of the 8 TeV analysis with **1 fb**⁻¹ at 13 TeV

For very early data the analysis will probably consider only the Strong Production SRs and Model Indipendent SR

Signal Cross Section vs Gluino Mass

Status of the analysis

At the moment di-photon is the **only photon + E_T^{miss} Susy analysis on-going** for Run 2 (no displaced photons, γ +b/lepton/jets+MET)

- 1. Signal Samples DC14: three points in the strong production mode have been requested MC15: request will be updated for complete signal grid
- 2. Background Samples DC14: some are alrealdy there, some are being requested. MC15: backgrounds will be requested
- 3. Derivation: under evaluation, either EXOT10, or HGG
- 4. Trigger: 2g50_loose or g35_medium_g25_medium
- 5. xAOD analysis being implemented. Some delay caused by the overlap of the closure of the Run1 analysis and the beginning of the new one

Tools: SUSYTools and HistFitter

6. Institutes: LPNHE Paris, Milano, Santa Cruz, Tokyo

Summary and Conclusions

- E_T^{miss} + Photons searches can provide insight in different BSM scenarios
- Mono-Photon and Di-Photon analyses have produced interesting results in Run 1, although no excesses were found
- Mono-Photon and Di-Photon searches have good sensitivity for discovery or exclusion with early or very early data at 13 TeV

Di-Photon \rightarrow very early data

Mono-Photon \rightarrow early data

• Run 2 work is on-going and analyses are being implemented: we aim at covering all analyses aspects !

E_T^{miss} performance in Gamma+Jet

Mono-Photons in Run 1: More Results

BSM with E_T^{miss} + Photons

Mono-Photons in Run 1: More Results

Mono-Photons in Run 1: More Results

BSM with E_T^{miss} + Photons