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Disclaimer

Any guess on what the relevant physics will be at HL-LHC

unavoidably relies on:

   1) Present-day theoretical understanding 

   2) Absence of new physics at the LHC

Since we expect (or hope for) progresses on both sides,

don’t make too detailed plans too in advance.
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Composite Higgs Definition
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•Big Hierarchy from new CS

•Nambu-Goldstone Higgs:

⇠=
v2

f2
⌧ 1

•SM gauge and matter from ES

•Coupled by Partial Compositeness



Composite Higgs Signatures

• Higgs Couplings Modifications


• EW-charged vector resonances


•Fermionic Top-Partners



Higgs Couplings

Low energy Higgs physics from symmetries

Given that we will have to gauge the SM subgroup of SO(5), we must consider also local trans-

formations, g = g(x), in the above equation. We also have to define gauge sources AA
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some of which we will eventually make dynamical while setting the others to zero. Explicitly, the

dynamical part of A
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where c
w

and s
w

denote respectively the cosine and the sine of the weak mixing angle and g, g0 are
the SM couplings of SU(2)

L

and U(1)
Y

. Notice that A
µ

belongs to the unbroken SO(4) subalgebra,

this will simplify the expression for the d and e symbols that we will give below.

The d and e symbols

Still treating A
µ

as a general element of the SO(5) algebra, we can define the d and e symbols as

follows. Start from defining
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this transforms under SO(5) in a peculiar way
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Since h = h(⇧; g) is an element of SO(4) as in eq. (A.8), the shift term in the above equation, ih@
µ

ht,

lives in the SO(4) subalgebra. Therefore, if we decompose Ā
µ

in broken and unbroken generators
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we have that di
µ

transforms linearly (and in the fourplet of SO(4)) while the shift is entirely taken
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Let us now restrict, for simplicity, to the case in which A
µ

belongs to the SO(4) subalgebra, as

for our dynamical fields in eq. (A.14). It is not di�cult to write down an explicit formula for d and

e, these are given by
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where r
µ

⇧ is the ”covariant derivative” of the ⇧ field:

r
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The first use we can make of the d
µ

symbol is to define the SO(5)-invariant kinetic Lagrangian

for the Goldstone bosons, this is given by

L
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In the unitary gauge of eq. (A.11) and using eq. (A.14) for A
µ
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from which we can check that the field ⇢ is indeed canonically normalized and read the W and

Z masses m
W

= g/2f sin hhi
f

, m
Z

= m
W

/c
w

. This fixes relation among hvi and the EW scale

v = 246 GeV
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The e
µ

symbol can instead be used to construct the CCWZ covariant derivatives, because the

shift term in its transformation rule of eq. (A.18) compensates for the shift of the ordinary derivative.

Consider for instance the field  defined in eq. (2.5) of the main text, which transforms in the 4 of

SO(4), i.e. like  ! h
4

· . The covariant derivative is

r
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The CP symmetry

By looking at eq. (A) and remembering that CP acts as H(x) ! H⇤(x(P )) on the Higgs doublet

we immediately obtain the action of the CP transformation on the Goldstone fields ⇧ and on the

Goldstone matrix U . It is
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where C
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and C
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are respectively a 4 ⇥ 4 and a 5 ⇥ 5 diagonal matrices defined as
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In the above equations the superscript “(P )” denotes the action of ordinary spatial parity. Similarly,

the ordinary action of CP on the SM gauge fields in eq. (A.14) is recovered if we take
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From the above equations it is straightforward to derive the CP transformations of the d and e

symbols defined in eq. (A.17),
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In the fermionic sector, adopting for definiteness the Weyl basis, the CP transformation of the

q
L

and of the t
R

are the usual ones

�(x) ! �(CP ) = i�0�2 ⇤(x(P )) , (A.29)

for � = {t
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}. For the top partners, in the case in which they transform in the fourplet of

SO(4) as in eq. (2.5), it is natural to define CP as
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while for the case of the singlet we simply have  !  (CP ). Notice that with this definition the

charge eigenstate fields {T,B,X
2/3

, X
5/3

} defined in eq. (2.5) have “ordinary” CP transformation

as in eq. (A.29);
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Fermion couplings are less sharply predicted

Do depend on fermionic operator representations



Higgs Couplings

A rough comparison with data:



Higgs Couplings

A rough comparison with data:

Projections:
Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a

wrong and too pessimistic conclusion. Therefore we parametrize the new physics contributions

to Ŝ and T̂ as
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where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �2 as a function of ⇠, m⇢, ↵, �, i.e. �2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �2 due to the contribution of the UV terms, we

11

Plausible reach:

⇠ ⇠ 0.1



Vector Resonances

A “very direct” direct signature:

JSO(4)
µ = (3,1)� (1,3)

The W partners V W

Two-Parameter modelling:
Typical Composite Sector scale: m⇤

Typical Composite Sector Coupling:

⇠ gW
gW
g⇤

For large   \ : reduced DY, reduced quark and leptons BRg⇤

g⇤ = m⇤/f

WV



Vector Resonances
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.

jj with W/Z tagged jets [57] respectively.10 The black curves represent constraints coming

from EWPT, i.e. from the Ŝ parameter, which we computed in Appendix B. The black solid

curve corresponds to the strict 95% C.L. bound on Ŝ of Ref. [67], while the dashed line is

obtained by artificially enlarging the latter bound by a factor of two. This second line is

a more realistic quantification of the constraints than the strict limits because the EWPT

observables are eminently o↵-shell observables and thus not calculable within the Simplified

Model. Extra contributions, of the same order as the ones coming from the resonance exchange,

can easily arise in the underlying complete model. By enlarging the bound on Ŝ we take these

contributions into account and obtain a conservative exclusion limit.

Any given explicit model corresponds to one point in the plots of Figure 3.2. The two

points indicated by A and B correspond to the prediction of the two benchmarks models

for the assumed values of gV and MV . For small gV the lepton-neutrino search dominates

the exclusion (first plot) and only a narrow band around �1 . cF . 1 remains allowed. Here

EWPT are not competitive with direct searches and the di-boson searches are almost irrelevant

due to the relatively small di-boson BR (see the discussion at the end of Section 2.1). Moreover,

for small gV both our benchmark models are excluded. As gV increases we notice four main

features: the constraints from EWPT become comparable to the direct searches, di-boson

searches become more and more relevant due to the enhanced BRs, model B evades bounds

from direct searches more and more compared to model A which remains close to the excluded

region, and bounds from EWPT constrain model B more than model A. The last two features

are due to the larger value of cH predicted by model B, corresponding to a region which is

very di�cult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit models

and draw exclusion curves in the plane of their input parameters. In both models A and B we

have two parameters, the coupling and the mass of the new vector. The limits in the (MV , gV )

10For recent theoretical developments in the search for vector resonances using boosted techniques see, for
instance, in Refs. [80–82].
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Current Limits on W partners:

V>lv

V>WZ>jj

V>WZ>3lv

EWPT

Even weaker if Top Partner decays open 

[Contino et al. 2012; Greco et.al., 2013; Chala et al. 2014;]

[Pappadopulo, Torre, Thamm, AW, 2014]



Vector Resonances
Direct versus Indirect @ LHC

[Torre, Thamm, AW, 2015.]
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Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other

22

:   (low tuning)

In a class of explicit CH models

mH � [115, 130]

[Matsedonsky,i Panico, AW 2012]
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Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other

22

Q=2/3

Q=5/3
mH � [115, 130]

⇠ = 0.1 :   (low tuning)

In a class of explicit CH models

[Matsedonsky,i Panico, AW 2012]
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Figure 2: The typical spectrum of the top partners.

nature of the Higgs and it would be generically violated, as previously discussed, if this assumption

was relaxed. This result also depends on t
R

being a composite singlet. If t
R

was instead a partially

composite state mixing to a non-trivial representation of SO(5) (for instance a 5) there would be

additional entries in the mass matrix. 8 In a sense our result depends on y being the only relevant

parameter that breaks SO(5) explicitly.

Once the mass-matrix has been put in the block-diagonal form of eq. (2.17) it is straightforward

to diagonalize it and to obtain exact formulae for the rotation matrices and for the masses of the

top and of the T partner. However the resulting expressions are rather involved and we just report

here approximate expressions for the masses. We have

m
t
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2
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 q
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sin ✏
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✓
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,

m
T

'
q
M2

 

+ y2f2
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2

)y2
�

4
�
g2
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2
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#
. (2.18)

From the above equation we obtain the correct order of magnitude for the top mass if, as anticipated,

y ⇠ y
t

and g
 

& 1. In this region of the parameter space the corrections to the approximate formulae

are rather small, being suppressed by both a factor y2/g2
 

(which is preferentially smaller than one)

and by ⇠ ⌧ 1. However we will consider departures from this theoretically expected region and

therefore we will need to use the exact formulae in the following sections.

Similarly we can study the sector of �1/3 charge states. It contains a massless b
L

, because we

are not including the b
R

in our model, plus the heavy B particle with a mass

m
B
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q
M2

 

+ y2f2 . (2.19)

This formula is exact and shows that the bottom sector does not receive, in this model, any con-

tribution from EWSB. By comparing the equation above with the previous one we find that the

8The top partner’s spectrum with partially composite t
R

has been worked out in Ref. [11, 10].
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As one can see from the last expressions the mass of the eT receives positive contributions proportional

to y2 and hence for a fixed mass of the eT , y must be limited from above. Unlike the models with

fourplet partners, in the singlet case y completely controls the couplings of the eT with the top and

bottom quarks (see Sec. 3.2). Therefore one can expect that for a given me
T

there exists a maximal

allowed coupling of the SM particles with the top partner and hence for small masses the single

production of eT is suppressed. In addition small values of me
T

become unnatural since they require

very small y together with a very large c
2

needed to recover correct top mass. By minimizing the

largest eigenvalue of the mass matrix with respect to M
 

for fixed y and f one can find a minimal

allowed mass of the eT which is given by
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for the models M1

5

and M1

14

respectively. The bound given in eq. (2.28) will a↵ect the exclusion

plots in the following.

2.2.2 Trilinear Couplings

Other interesting qualitative aspects of our models are discovered by inspecting the explicit form

of the Lagrangians in unitary gauge. These are reported in Appendix B, and are written in the

“original” field basis used to define the Lagrangians in eq.s (2.5, 2.7, 2.11, 2.12), i.e. before the

rotation to the mass eigenstates. Appendix B contains, for reference, the complete Lagrangian

including all the non-linear and the derivative Higgs interactions. However the coupling that are

relevant to the present discussion are the trilinears involving the gauge fields and the Higgs in the

models M4

5

and M4

14

, reported in eq. (B.1), (B.2), (B.3) and (B.4).

The first remarkable feature of eq. (B.2) is that the Z boson couplings with the B is completely

standard: it is not modified by EWSB e↵ects and coincides with the familiar SM expression g
Z

=

g/c
w

(T 3

L

� Q). In particular it coincides with the Zb̄
L

b
L

coupling, involving the elementary b
L

,

because b
L

and B have the same SU(2) ⇥U(1) quantum numbers. The Z-boson coupling to charge

�1/3 quarks is therefore proportional to the identity matrix. Consequently the Z interactions remain

diagonal and canonical even after rotating to the mass eigenbasis. In particular, in the charge �1/3

sector, there will not be a neutral current vertex of the form B ! Zb.

This property is due to an accidental parity, P
LR

, defined in Ref. [8] as the exchange of the Left

and the Right SO(4) generators. This symmetry is an element of O(4) and it acts on the top partner
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Figure 9: Current bounds (left panel) on the mass of a charge-2/3 state decaying with 50% branching ratio
into Wb. The bounds are presented for di↵erent values of the coupling c

L

to the bottom quark. The gray
shaded area is excluded from pair production only, the green shaded area corresponds to the estimated
exclusion from b-associated single production [37]. In the right panel: estimated projection of the bounds
for the 13 TeV LHC run. The dash-dotted blue lines show the contours with �/M = 0.2, 0.3, 0.5.

the present CMS and ATLAS analyses seem to be targeted exclusively on pair production, in such
a way that a recast to include single production is not doable. To get an idea of how much the
single production process can improve the pair production bounds we thus focus on the analysis
of Ref. [37] and reinterpret their results. For our reinterpretation we extracted from the results of
Ref. [37] the number of signal events needed for the exclusion (S

exc

= 26) and the cut e�ciency.
Unfortunately the data included in Ref. [37] allows us to extract the cut e�ciency only for one mass
point, thus in our reinterpretation we assume that it is roughly independent of the resonance mass.
The results of our analysis are shown in Fig. 9. The plots show that, in the case of the 8 TeV LHC
searches, for small values of the single production coupling (c

L

. 0.3) the strongest bounds come
from pair production. For larger values, instead, single production leads to a bound that steeply
increases with c

L

and reaches M
T

& 1 TeV for c
L

' 0.7. To obtain the projections for the 13 TeV
LHC run, we assume that the number of events needed for the exclusion and the cut e�ciencies
coincide with the 8 TeV ones. The result is shown in the right panel of Fig. 9.

3.2.2 A two-Partners interpretation

As a final example in this subsection we consider one scenario in which two resonances can contribute
to the same final state. This possibility is not uncommon in explicit models in particular in the
composite Higgs framework. A typical example, on which we will focus in the following, is the case
in which a charge 5/3 state (X5/3) is present together with a charge �1/3 resonance (B). Both
resonances contribute to final states with two same-sign leptons, moreover the signal e�ciencies
for the two states are similar.8 For our illustrative purposes it is thus reasonable to simplify the
analysis by assuming the same cuts acceptances for both states. A more rigorous study, of course,
will require a separate determination of the B state acceptances. Some di↵erence with respect to

8This was verified for 7 TeV collider energy in Ref. [11].
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Dark Matter

Heavy-Mediator hypothesis: DM to SM from high scale dynamics

MMed � mDM

In the case of heavy-mediator DM, on which we focus in the present article, this program
can be carried out, at least to some extent. The working hypothesis is that the DM
candidate X interacts with the SM through the exchange of one or more particles, called
“mediators”, whose mass is well above the mass m

DM

of the DM particle. This assumption
is motivated by the present lack of evidence for new particles at the LHC, but it is not
the only possibility. The case in which the mediator is a SM particle, such as a weak or
the Higgs boson, is equally plausible and deserves equal attention. Light and very weakly
coupled mediators can be also conceived.

In the heavy-mediator case, it is relatively easy to set up a model-independent strategy
for DM searches, exploiting the fact that the dynamics of the DM particle can be universally
described, in the appropriate kinematical regime, by a low-energy EFT Lagrangian [7–17],
invariant under the SM gauge group and the Lorentz group 2:

L
EFT

= L
SM

+ L
X

+ L
int

. (1.1)

In the above equation, L
SM

denotes the SM Lagrangian, L
X

is the free Lagrangian for X,
and L

int

contains the operators describing the DM interactions with the SM particles, plus
possible additional interactions in the DM and SM sectors. If we knew the true microscopic
DM theory, these operators could be computed by integrating out the mediators. However,
their form is universal and the lack of information on the mediator dynamics merely prevents
us from computing the value of their coefficients, which are thus free input parameters of
the EFT.

The allowed operators in L
int

can be classified according to their mass dimension d,
for different hypotheses on the DM quantum numbers. In many relevant cases the DM
quantum numbers forbid renormalizable interactions with d  4, and the lowest-dimensional
operators have d = 5, 6. For the physics to be considered in this paper, we can assume that
the d = 5 operators are negligible and the leading operators have d = 6:

L
int

=
1

M2
⇤

X

i

c
i

O
i

, (1.2)

where the sum runs over all d = 6 operators O
i

allowed by the symmetries, c
i

are di-
mensionless coefficients and the overall effective coupling strength is parameterized by a
dimensionful coupling 1/M2

⇤ .
While the EFT can be formally defined independently of any consideration about its

microscopic origin, its range of applicability and thus its physical relevance depend on the
underlying theory. Namely, the EFT provides an accurate description of the underlying
model only for elementary scattering processes taking place at a low enough centre-of-mass
energy E

cm

, below a certain critical scale M
cut

usually called the EFT cutoff. This cutoff is
determined by the mass of the mediators in the microscopic theory (and, to a lesser extent,
by their width), but it is unknown from the viewpoint of the EFT and it should thus be
treated as a free parameter, on the same footing as those introduced above.

2At energies as low as those relevant for direct detection experiments, it may even be convenient to switch
to a non-relativistic EFT [18–21], but for obvious reasons this approach precludes a direct comparison with
collider searches and will not be pursued here.
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Mcut ⇠ MMed

All reactions occurring below are perfectly predictable

the recent literature, the goal of the present article is to illustrate a simple and practical
solution.

The basic observation is that the processes for DM production at colliders can be split
into two kinematically distinct classes, characterised by a centre-of-mass energy below and
above M

cut

, respectively. The former class defines our theoretical signal, and its rate is
accurately predicted by the EFT. The latter would instead require the knowledge of the
microscopic theory and its contribution to the cross-section is thus unpredictable within
the EFT. Under certain conditions, to be described below, the second class can be simply
ignored and an experimental limit can be set on the signal defined, as explained above, by
the DM production reaction restricted to E

cm

< M
cut

. This is possible if the experimental
search is performed as a counting experiment in one or several signal regions, defined by
a certain set of cuts on the visible final state particles. The low and high E

cm

processes
both contribute to each signal region, but in a purely additive way, since low and high E

cm

regions are quantum-mechanically distinguishable and do not interfere. Therefore a lower
bound on the expected cross-section is obtained by considering only the “well-predicted”
signal events, namely those restricted to the E

cm

< M
cut

region. If the result of the search
is negative, an exclusion upper bound �

exc

is set on the cross-section, which we can interpret
through the inequality

�S

EFT

���
Ecm<Mcut

 �S

true

< �
exc

, (1.4)

where �S

true

denotes the “true” signal as it would be computed in the unknown microscopic
theory. Regardless of what the latter theory is, the restricted EFT signal �S

EFT

system-
atically underestimates the cross-section and thus provides a conservative, but correct,
exclusion limit.

The rest of the paper is organised as follows. In section 2 we illustrate our limit-setting
strategy in the explicit example of a four-fermion operator obtained as the product of axial
currents involving the SM quarks and a SM-singlet Majorana fermion DM. This choice is
merely illustrative, the same method can be applied to all other operators. However, it
is also motivated by the fact that direct and indirect detection experiments have a poor
sensitivity to this operator and the collider searches are expected to be the most sensitive
ones. We quantify the reach of current collider searches by recasting the ATLAS mono-jet
results and show how the latter can be presented in a theoretically useful way. In section 3
we describe another important feature of our strategy, namely the fact that the limits set on
the EFT can be straightforwardly re-interpreted as constraints on any specific microscopic
model. This is because the EFT parameters can be computed in the underlying microscopic
theory and expressed in terms of the “fundamental” parameters of the latter. We consider
two representative models, Model A and Model B, which both give rise to the same axial-
axial effective operator, and compare the limits derived from the EFT with those obtainable
from a dedicated interpretation of the mono-jet search within the two models. Since our
signal cross-section systematically underestimates the one of the microscopic theory, we
obtain conservative limits. We find that these limits differ significantly from those obtained
in the full models only in the kinematical region where the mediators can be resonantly
produced. In such a case, however, different experimental strategies than those used for
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Restricting the signal to the predictable region sets lower bound on 
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compared with exclusion upper bound, model indep. limit is set

[Racco, AW, Zwirner, to appear]
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M⇤

mDM

heavy-mediator DM searches are generally providing stronger bounds. We end this section
by comparing our simple and practical strategy with a similar but more model-dependent
strategy recently put forward in [22–26, 28]. We finally present our conclusions in Section 4.
Some back-up material is collected in three appendices. Appendices A and B provide details
on Model A and Model B, respectively. Appendix C collects the approximate analytical
formulae used to draw the relic density constraint in some of the figures.

2 Limit-setting strategy

For the present study, we assume that the DM particle is a Majorana fermion, singlet under
the SM gauge group and represented by a self-conjugate four-component spinor X = Xc,
whose free Lagrangian reads

L
X

=
1

2
X (i@/�m

DM

)X . (2.1)

As for the interactions between X and the SM particles, we just choose a representative
example to illustrate our limit-setting strategy, assuming that they can be described, in the
low-energy limit, by the single axial-axial four-fermion operator 3

O = � 1

M2
⇤

�
X�µ�5X

�
 
X

q

q�
µ

�5q

!
, (2.2)

where the sum is over all quark flavours (q = u, d, c, s, t, b), the dimensionless coefficient c has
been re-absorbed in the definition of M⇤, and the overall minus sign is purely conventional
in the present context. This effective operator mediates DM pair-production at the LHC,
a process which is however undetectable and impossible to trigger because of the lack of
visible objects in the final state. Searches are performed by considering extra emissions
from the initial quarks, leading to the so-called “mono-N ” signatures, where N could be a
jet [30–35], a photon [36–39], a massive weak boson [40, 41] or a top quark [42, 43]. Below
we restrict our attention to the mono-jet searches, because they currently show the best
sensitivity, but our considerations also apply to the other channels.

2.1 ATLAS mono-jet recast

Searches for a jet plus missing transverse energy (MET) have been performed at the LHC
by the ATLAS [31, 33, 34] and CMS [30, 32, 35] collaborations. We focus here on the
most recent ATLAS analysis in ref. [34] because, being the one with milder MET cuts, it is
expected to have a better reach on our signal as explained below. The search is performed
as a counting experiment in four overlapping signal regions (SR), with pre-selected events
characterized by more than 120 GeV of MET, one jet with p

T

> 120 GeV, |⌘| < 2 and
at most one additional jet with p

T

> 30 GeV and |⌘| < 4.5. If found, the second jet is
asked to be separated in the azimuthal direction from the MET vector by a cut �� > 0.5.

3This operator is twice the M6 operator in [12], and formally coincides with the D8 operator in [14],
which is often taken as a benchmark for experimental searches. Notice however that we are dealing with a
Majorana spinor normalised as in (2.1), while D8 involves a canonically normalised Dirac spinor.
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mensionless coefficients and the overall effective coupling strength is parameterized by a
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While the EFT can be formally defined independently of any consideration about its

microscopic origin, its range of applicability and thus its physical relevance depend on the
underlying theory. Namely, the EFT provides an accurate description of the underlying
model only for elementary scattering processes taking place at a low enough centre-of-mass
energy E

cm

, below a certain critical scale M
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usually called the EFT cutoff. This cutoff is
determined by the mass of the mediators in the microscopic theory (and, to a lesser extent,
by their width), but it is unknown from the viewpoint of the EFT and it should thus be
treated as a free parameter, on the same footing as those introduced above.

2At energies as low as those relevant for direct detection experiments, it may even be convenient to switch
to a non-relativistic EFT [18–21], but for obvious reasons this approach precludes a direct comparison with
collider searches and will not be pursued here.
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signal region SR1 SR2 SR3 SR4

pjet

T

and MET >120 >220 >350 >500

�
exc

[pb] 2.7 0.15 4.8 10�2 1.5 10�2

Table 1. Signal region definitions (cuts expressed in GeV) and 95% CL limits from ref. [34].

Additional requirements, namely on the primary vertex reconstruction and on the absence
of extra jets with anomalous charged/calorimetric composition, are not directly relevant for
our study since their impact crucially depends on the detector response, which we cannot
simulate. The four signal regions SRi (i = 1, 2, 3, 4) are defined by increasingly strong cuts
on the MET and on the leading jet p

T

. The results are presented as upper bounds, �i

exc

,
on the visible cross-section in each region. The SR definitions and the exclusion limits are
summarized in table 1.

We reinterpret these limits by proceeding as follows. The expected signal in each SR
can be expressed as

�
SRi

= � ⇥A
i

⇥ ✏
i

, (2.3)

where � denotes the total signal cross-section defined as in eq. (1.4), A
i

is the geometric
cut acceptance, as obtained from a leading-order parton-level simulation, and the efficiency
✏
i

is the correction due to showering, hadronization and detector effects. Acceptances and
efficiencies depend on the DM mass and on the cutoff M

cut

, while the operator scale M⇤ only
enters in the total cross-section as an overall factor 1/M4

⇤ . We compute the parton-level
quantities � and A

i

by MadGraph 5 [44] simulations, while we estimate the ✏
i

corrections
by matching with the limits on the D8 operator scale reported in ref. [34]. In practice, we
simulate the same D8 operator signal considered in ref. [34] (i.e. M

cut

= 1 in eq. (1.4),
we compute � ⇥ A

i

and we determine ✏
i

such as to reproduce the ATLAS limit on the
effective operator scale as a function of the DM mass. Actually, since only the third SR is
used by ATLAS to set the limit, only ✏3 can be obtained in this way. The same efficiencies
are used for the other SR’s, although we see no reason why the efficiency should stay the
same in all the regions. The result of this procedure gives rather small efficiencies, of
around 60%, approximately constant over the whole DM mass range. We verified that this
considerable signal loss is mainly due to the showering-level production of extra jets that
are vetoed in the event selection as explained above. However, our estimate of the efficiency
might not be a very accurate approximation. Aside from the dependence of ✏ on the signal
region, corrections might come from the fact that our efficiencies might be significantly
different than those of the D8 operator signal. In spite of being based on the same effective
operator (2.2), indeed, our signal is constrained (depending on M

cut

) to the low invariant
mass region and thus it is expected to have different kinematical distributions. A complete
detector simulation in different regions of m

DM

and M
cut

would be needed for an accurate
analysis.
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counting in four SR

Under the assumptions explained above, the expected signal takes the form

�
SRi

(M⇤,m
DM

,M
cut

) = �(M⇤,m
DM

,M
cut

)⇥A
i

(m
DM

,M
cut

)⇥ ✏

=


1TeV
M⇤

�4
⇥ �(m

DM

,M
cut

)⇥A
i

(m
DM

,M
cut

)⇥ ✏ , (2.4)

where the overall scaling of the cross section with M⇤ has been factored out and the result
expressed in terms of a reference cross-section � computed for M⇤ = 1 TeV. The reference
cross-section times the acceptances are obtained by MadGraph 5 [44] simulations of DM pair
plus one parton production, duly restricted by the hard jet kinematical cuts that define
each SR. MET cuts are automatically imposed because the jet and the missing transverse
momentum, i.e. the transverse momentum of the DM pair, are back-to-back in our parton-
level sample. The theoretical restriction E

cm

< M
cut

, which ensures the validity of the
EFT description as explained in the Introduction, should be imposed as a cut on the total
invariant mass of the hard final states of the reaction, namely as

[p(DM1) + p(DM2) + p(jet)]2 < M2
cut

. (2.5)

For our parton level simulation this is equivalent to a cut
p
bs < M

cut

on the total partonic
centre-of-mass energy, however when going to the showered and matched level one should
be careful not to cut on

p
bs but on the variable in eq. (2.5), with p(jet) the leading jet

four-momentum.
A scan is performed in the (m

DM

,M
cut

) plane for each SR and the values of � ⇥ A
i

are used to construct two-dimensional interpolating functions. A significant dependence on
m

DM

is only found for m
DM

& 80 GeV, while for smaller values �⇥A
i

is basically constant
in m

DM

. Once the signal cross-sections are known, the 95% CL limits are imposed as
constraints

�
SRi

(M⇤,m
DM

,M
cut

) < �i

exc

, (2.6)

out of which the 95% CL allowed regions are immediately found in the three-dimensional
parameter space (M⇤,m

DM

,M
cut

). The limits from the various signal regions can be studied
separately or combined as the overlap of the four allowed regions. The results of this simple
limit-setting procedure are discussed in the following section.

2.2 Results and discussion

At fixed m
DM

and M
cut

, the ATLAS limits in eq. (2.6) become lower bounds on the scale
M⇤, reported for each signal region in fig. 1 as a function of m

DM

and for different values
of M

cut

. The upper line in each plot corresponds to the naïve EFT limit, obtained without
imposing any restriction on the hard scattering scale. In our framework, this is recovered at
large M

cut

, formally infinite or above the LHC threshold of 8 TeV. The naïve EFT limit in
SR3 coincides with the ATLAS result on the D8 operator up to a 4

p
2 factor, which reflects

the factor 2 enhancement of the cross-section for a Majorana DM particle with respect to
the Dirac case considered in ref. [34], if the same operator is used and the normalisation in
eq. (2.1) is taken into account. The limit deteriorates for decreasing M

cut

because of two
distinct effects. The first one is that the total reference cross-section � decreases, because it
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[Racco, AW, Zwirner, to appear]



Dark Matter

SR4 (hardest) SR1 (softest)

Hard signal regions are favored at high cutoff (naive EFT)

But rapidly loose sensitivity: the cut makes distributions softer

[Racco, AW, Zwirner, to appear]



Dark Matter

Theoretical connection among        and           :

The EFT is then characterised by at least three parameters:

• the DM mass m
DM

;

• the scale M⇤ of the interaction;

• the cutoff scale M
cut

of the EFT.

If a single operator appears in eq. (1.2), the corresponding dimensionless coefficient can be
absorbed in M⇤, otherwise the EFT parameters also include the c

i

coefficients. With these
free parameters, the EFT faithfully reproduces the predictions of any microscopic theory
for all processes taking place at E

cm

< M
cut

. Given that the effective operators in eq. (1.2)
may have many possible microscopic origins, exemplified by the plethora of models in the
literature, this simplification is particularly useful.

Notice that M
cut

and M⇤ are logically independent parameters, however they can be
approximately related by

M
cut

= g⇤M⇤ , (1.3)

where g⇤ is a suitably defined “typical coupling strength” of the underlying microscopic the-
ory. The simplest way to motivate the above equation is the analogy with the Fermi theory
of weak interactions, where the cutoff M

cut

is the mass of the W boson, i.e. the “mediator”
in this context, g⇤ is the SU(2) gauge coupling g

w

and 1/M2
⇤ is the Fermi constant G

F

,
which indeed obeys eq. (1.3) up to numerical factors. Alternatively, the physical meaning of
g⇤ can be appreciated by noticing that the EFT interaction strength is given, for processes
taking place at a given center-of-mass energy, by the dimensionless combination E2

cm

/M2
⇤ .

At the mediator scale, i.e. the cutoff scale M
cut

, this strength becomes M2
cut

/M2
⇤ = g2⇤,

providing further justification for interpreting g⇤ as the typical mediator coupling. Using
eq. (1.3) to re-express M⇤ in terms of g⇤ will be important in section 2.2, in order to draw
the current limits on a plane suited for theoretical interpretation.

The EFT can be straightforwardly used to predict the cross-sections for a number of
relevant reactions, namely the DM annihilation in the Early Universe, which determines
the thermal relic density, the present-day annihilation, which controls indirect detection,
and the DM scattering on nucleons, which direct search experiments try to detect. Indeed,
all these reactions take place at safely small E

cm

and therefore, up to subtle effects that
might be encountered in the relic density calculation, the EFT predictions are automati-
cally trustable. If collider searches could be added to the list, we would reach the truly
remarkable conclusion that all the experimental information on heavy-mediator DM can be
simultaneously interpreted and compared in a completely model-independent fashion, with
no prejudice on the specific nature of the mediator and of its couplings to DM and to the
SM. However, the usage of the EFT at colliders is problematic, because the energy of the
reaction in which the DM is produced is not necessarily smaller than M

cut

, and this risks to
invalidate the EFT predictions. The effect is quantitatively amplified by the requirement
of extra hard objects (e.g., one jet), in addition to the pairs of DM particles, for the signal
to be disentangled from the background. This problem has been discussed at length in
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estimated mediator coupling

We know for sure that: g⇤ < 4⇡

g⇤ ⇠ 1Expected for a WIMP:

McutM⇤

[Racco, AW, Zwirner, to appear]
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Fixed      limits:g⇤

[Racco, AW, Zwirner, to appear]



Dark Matter

Message:
work is needed on mono-X, especially in the soft region

Question:
two fwd ISR jets, from same IP, plus nothing and little MET

(also good for H>invisible or WW>invisible)

unthinkable even with upgrade?



Conclusions

•CH is a playground for (Un-)Naturalness tests

1.Higgs couplings modifications

2.Vector or fermion resonances

•Top Partners single prod. deserves particular attention

•Heavy-mediator DM is far from fully tested

  could we do better with HL and new detectors?


