X Workshop ATLAS Italia 10-12 February 2015, Díp. Físíca and INFN - Mílano, Italy ~ Dark Hidden Sectors and all that...

... on the verge of LHC Run 2 start-up !

Mílano, 12 February 2015

di Fisica Nucleare Sezione di Roma

INFN Barbara Mele

Outline

- our starting point
- signature-based searches of BSM at LHC
- broad and (usual) strict definitions of Hidden (Dark) Sectors
- Hidden Sectors and the LHC
- (massive and massless) Hidden (Dark) Photons
- Hidden Sectors explaining Flavor hierarchy
- new Higgs signatures from Hidden Sectors
- Outlook

```
everywhere in my slides:
HS = Hidden Sector = Dark Sector
DP = Dark Photon = Hidden Photon
F(f) ↔ Flavor index
```

where we stand today (in one slide)

pp collisions: where we stand today

- ▶LHC run at 7-8 TeV completed [∫L~5+20 fb⁻¹/ exp] (just initial LHC phase !) amazing performance → results well above expectations...
 ▶ SM tested at high accuracy in a new √s range : QCD (many regimes), top physics, EW processes, flavor
 ▶ "direct" exploration of SM EWSB sector started up with
 - observation of a (quite light) Higgs resonance !!!
- still a lot of room for a non-SM EWSB sector
- bounds on new heavy states predicted by many BSM models widely extended wrt pre-LHC era
- > no real hint of BSM physics !
- SM Hierarchy-Problem solution getting harder...

SM-Lagrangian basics

<u>SM gauge group :</u>

<u>Higgs Lagrangian :</u>

 $SU(3)_{QCD} \times SU(2)_L \times U(1)_B$ spontaneusly broken via Higgs mechanism

 \rightarrow SU(3)_{QCD} x U(1)_{em}

$$\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - V(\phi^{\dagger}\phi) - \bar{\psi}_{L}\Gamma\psi_{R}\phi - \bar{\psi}_{R}\Gamma^{\dagger}\psi_{L}\phi^{\dagger} \\ \text{masses fix all} \\ \text{Higgs interactions} \qquad V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \frac{1}{2}\lambda(\phi^{\dagger}\phi)^{2} \\ m_{H}^{2} = 2\mu^{2} = 2\lambda v^{2}$$

built up just by imposing gauge invariance (LSM singlet of SM group) renormalizability [D ≤4 operators]

Higgs observation -> triumph of SM (and LHC !)

Barbara Mele

a clear SM footprint is emerging : g_{HXX} ~ m_X⁽²⁾

SM is not enough!

guiding principles to go BSM

SM beautifully successful at E < 1 TeV, but has some "messy features" (flavour sector...), and does not explain a number of things (strong CP, neutrino sector, baryogenesis, Dark Matter...)

> crucial issue for Collider Physics (and LHC !) :

what is the expected Energy THReshold (E_{THR}) to go BSM ???

Quadratic divergences on fundamental-scalar mass

drive MH to the next energy threshold ETHR !

to avoid Fine-Tuning of parameters,
 one expects roughly :
 ETHR ~ MH / gcoupling ~ 0 (1 TeV)

this was (before LHC start-up), and STILL IS (after Run 1), a ROBUST statement !!!

the exact way E_{THR} materializes (→ enters theory) depends on the actual (yet unknown !) SM extension

after LHC Run I, Simplest Versions of "PROPOSED" Models look quite Fine-Tuned !

a ROBUST statement too !!

25 % of matter in the Universe is DARK ! (non relativistic, non baryonic, non luminous) → WIMP interpretation of DM widens LHC potential for New Physics !

collisions between galaxy clusters

Abell 2744: Pandora's Cluster; 3.5 billion light years away; 5.9 million light years across;

Blue : mostly dark matter, via gravitational lensing (HST+VLT+Subaru)

Red: gas with T's of millions of degrees (Chandra X-ray)

Barbara Mele

ingredients to optimize BSM coverage at the LHC

- highest collision cm energy and luminosity to produce heavy states with moderate production coupling
- ▶ highest ability to separate S from B, in particular in high-p_T tails and m(i,j) distributions (revealing scattering exchange of new states)
- highest ability to cover stealthy kinematical configurations (mass degeneracies, soft final objects ...)
- >exploiting as much as possible signature-based searches!

most valuable activity in BSM model building is suggesting new kinds of signatures ! (help pushing LHC discovery potential in a model-independent way ...)

"LOOSE" definition :

"what is actually missing in the SM"

(apart from gravity)

Barbara Mele

in principle rich internal structure and interactions

ex: SUSY partners could be presently in this class, Dark Matter is surely there !!!

"STRICTER" definition of HS : (the usual one ...)

"Sector UNCHARGED (= singlet) under SM gauge group (and vice versa)"

at tree level in general :

Barbara Mele

in principle rich internal structure and interactions

typically: "more weakly coupled than SM"

ex: SUSY partners are not in this class , DM might be there or not !

3 kinds of interactions connecting SM \leftrightarrow HS

Mixing of gauge neutral particles → U(1)_{SM} ↔ U(1)_{DP} (photon ↔ Dark Photon) [D=4, renormalizable (m_{DP}≠0)]

 \blacktriangleright new HS scalars φ interacting with SM Higgs ~ $\phi^{\dagger}\phi H^{\dagger}H$ (Higgs-portal type) [D=4, renormalizable]

higher-dimensional [D > 4] operators : L ~ 1/[E]^(D-4) [SM]_{singlet} × [HS]_{singlet} [suppressed by large E scale (mediator masses ?)] many many possibilities (axion-like enters here)!

crucial parameters are (in principle unconstrained) HS masses, couplings, mixing angles !!!

HS phenomenology at LHC

- very rich phenomenology both at LHC and lowerenergy experiments [if mass-scale/couplings at reach]
- weak couplings of HS to SM can give rise to stable or long-lived states on the length scale of LHC detectors !
- a quite weak point (!):
 usually not a very predictive framework !
 long list of (~ implicit !) assumptions needed
 every study tends to be dependent on quite a few parameters ...

FOCUS on Dark Photon (DP) from extra U(1)

- HS can contain light or massless gauge bosons (Dark Photons, DP) mediating long-range forces between Dark particles
- present studies mainly involving "massive" DP
- ▶ a massive DP interacts with SM matter mainly via "kinetic mixing" with SM hypercharge U(1)y gauge boson : B_{µν} = ∂_µB_ν - ∂_νB_µ [U(1) gauge invariant]
 4D interac. between field-strengths of two different U(1) allowed → L_{mix} = χB_{µν}C^{µν} mixing param.

\clubsuit DP couples to SM particles with strength $-\chi eQ_{el}$

^{END} LHC bounds on massive DP (Z')

Barbara Mele

2,μ

WARNING !

if U(1)_F unbroken (→ massless DP) no such constraints ! (on-shell DP decoupled from SM)

(off-shell) massless DP can interact with SM sector only through higher-dimensional (i.e. quite suppressed) interactions !

HS matter charged under hidden U(1) can get small electric charge !

Mystery in Hierarchy of SM Yukawa's

origin of Flavor Symmetry Breaking ?

Explaining Y_f hierarchy via HS and extra $U(1)_F$ Gabrielli Raidal, arXiv:1310.1090; Ma, arXiv:1311.3213 HS containing N_f heavy fermions (Dark Matter ?) charged under Dark unbroken U(1)_F (\rightarrow massless DP $\overline{\gamma}$) Chiral Simmetry spont. broken in HS via nonperturbative effects (via higher-derivative in DP field ~ $1/\Lambda \rightarrow$ Lee-Wick ghosts) Gabrielli arXiv:0712.2208 Dark fermions (Df) get M_{Df} mass depending on their $U(1)_F$ charge q_{Df} : anom. dim. $M_{D_f} \sim \exp(-\frac{\kappa}{q_{D_f}^2 \bar{\alpha}})$ DP coupling \gg ex: for integer q_{Df} sequence ($q_{Df}=1, 2, 3, 4...$)

→ exponential hierarchy in M_{Df}

Flavor and Chiral Symmetry Breaking in HS transferred to visible-sector Yukawa couplings at one-loop via squark/slepton-like scalar messangers !

heavy scalar messengers S_{L,R}

SL,R

heavy scalar messengers (squark/slepton-like) connecting SM states with HS states

	Fields	Spin	$SU(2)_L$	$U(1)_Y$	$SU(3)_c$	$U(1)_F$
	$\hat{S}_L^{D_i}$	0	1/2	1/3	3	- q_{D_i}
messengers	$\hat{S}_L^{U_i}$	0	1/2	1/3	3	$-q_{U_i}$
(Scalars)	$S_R^{D_i}$	0	0	-2/3	3	$-q_{D_i}$
	$S_R^{U_i}$	0	0	4/3	3	- q_{U_i}
Dank Sacton	Q^{D_i}	1/2	0	0	0	q_{D_i}
Equipment Scalen	Q^{U_i}	1/2	0	0	0	q_{U_i}
rennions+Scular)	S_0	0	0	0	0	0

Barbara Mele

radiative Yukawa coupl.s follow MDf hierarchy !!!

▶
$$Y_f=0$$
 at tree level [(H \leftrightarrow -H) SB Symmetry]

Yf's arise radiatively (via loop messenger-exchange) with same pattern of exponential hierarchy of Dark fermion (Df) masses :

$$Y_f \sim M_{D_f} \sim \exp(-\frac{\kappa}{q_{D_f}^2 \bar{\alpha}})$$

Flavor \longleftrightarrow Non-Universal QDf

example : if $q_{D_e} = 4 , \ q_{D_{\mu}} = 5 , \ q_{D_{\tau}} = 6$

 $S_{L_1}^{U_i}$

 H_0

 \rightarrow given m_e, m_μ as input $\Rightarrow m_\tau \simeq 1.9 \text{ GeV}$

(and, for Dirac v's, $q_{D_{\nu_{\tau}}} = 3 \Rightarrow m_{\nu_{\tau}} \sim 5 \,\mathrm{eV}$)

Barbara Mele

Df are lightest Dark particles, all stable [conserved U(1)_F charge], potentially contributing to Dark Matter

if Df-mass scale accessible stability (yet to be explored...) (vacuum stability) 1 the meant rich phenomenology at colliders

in the meantime

one straightforward (nontrivial) new signature in Higgs decays...

mono-photon exotic Higgs signature

Gabrielli et al, arXiv:1405.5196

massless (invisible) Dark Photon

(mediating long-range U(1)_F force between Dark particles)

H non-decoupling effects (just as in SM) possible:

 $\Gamma(H o \gamma ar{\gamma}) \sim rac{1}{M_{Heavy}^2} o rac{1}{v^2}$

Barbara Mele

Barbara Mele

Milano, 12 February 2015

33

resonant mono-photon signature

(A_1) 5	$60 \text{ GeV} < p_T^{\gamma} < 63 \text{ GeV} (A_2) 60 \text{ GeV}$	$V < p_T^{\gamma} < p_T^{\gamma}$	63 GeV
$H \rightarrow \bar{\gamma} \gamma$	σ (fb)	$\sigma \times A_1$	$\sigma \times A_2$
	Signal $BR_{H\to\gamma\bar{\gamma}} = 1\%$	65	34
$F_{miss} \sim F_{v} \sim m_{H}/2$	γj	715	65
	$\gamma Z o \gamma \nu \overline{\nu}$	157	27
	$jZ \to j \nu \bar{\nu}$	63	11
$M_T = \sqrt{2p_T^{\gamma} \not E_T (1 - \cos \Delta \phi)}$	$W \to e \nu$	22	0
	Total background	957	103
	$S/\sqrt{S+B} \ (BR_{H\to\gamma\bar{\gamma}} = 1\%)$	9.1	13.0
~ 500	$S/\sqrt{S+B} \ (BR_{H\to\gamma\bar{\gamma}} = 0.5\%)$	4.6	6.9
$J_{\rm q} = 100$	$3R_H^{\bar{\gamma}\gamma} = 5\%$	8TeV/2	20fb ⁻¹)
τρ/ορ 10	model-inc measureme	depend ant of	lent BR _{DP} !
60^{-70} 70 80 90 100 (parton-level analysis) M_T [GeV]	110 120 130 Gabrielli et al,arXiv:1405.5196		34

Outlook

- SM is not enough...
- Hidden Sectors fruitful (and theoretically-consistent) way to parametrize our ignorance about what is missing in SM
- sometimes theoretically motivated (i.e. solving SM drawbacks) (sometimes not so much ...)
- useful for devising new kinds of exp. signatures to boost LHC potential for BSM discovery
- massless Dark Photon theoretically appealing (evading most of present experimental bounds on massive DP !)
- Higgs boson observation (and Higgs decoupling properties) opened up an entire new chapter of HS exploration
- worth looking to Higgs resonant single-photon signature as a probe of HS explaining Flavor Hierarchy (or other BSM...)
- many other non-SM signatures from HS's... (see next talks)