XVII Roma Tre Topical Seminar on Subnuclear Physics:
The Higgs potential and physics at future colliders
10 December 2014, Università di Roma Tre, Italy

Measurement of the Higgs self-coupling at the HL-LHC and future colliders

Barbara Mele

Outline

- a challenge for HH production → TH uncertainties
- HH production BSM
- Searches for HH in Run 1
- HH production at HL-LHC: present projections
- HH production at Linear Colliders: present projections
- Qutlook

updated discussion in LHC Higgs-XSections Working Groups:

https://indico.cern.ch/category/5847/

(with all relevant references...)

Higgs self-couplings in the SM

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda vH^3 + \frac{1}{4}\lambda'H^4$$

in the SM:

$$\lambda = \lambda' = M_H^2/(2v^2) = 0.13$$

m_H directly related to Higgs dynamics!

needs HH
in final states

BSM : Max λ deviations compatible with no other BSM observation: few % to ~20%

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^a -15\%^b$
NMSSM	-25%

Target for both TH and EXP accuracies!

bad news! tiny SM HH rates!

dominant production in pp collisions:

ruled by Y_t and λ

 $\sigma(HH)_{SM} \sim 10^{-3} \sigma(H)_{SM}$

 $\ensuremath{\checkmark}$ other production channels have σ < 1/10 σ (HH):

$$qq' o extit{HH} qq' \qquad qar{q}' o extit{ZHH}/ extit{WHH}$$

$$q\bar{q},gg \rightarrow t\bar{t}HH$$

σ sensitivity to λ H³ coupling at 14 TeV

Target: ~ 20% constrain on λ_{HHH}

gg -> HH (TH): known results

LO cross section

~ 18 fb

 $(\sqrt{S}=14 \text{ TeV})$

NLO $(m_t \rightarrow \infty)$

- ~ +100%
- NLO including 1/m_t terms
- ~ +10%

NNLO $(m_t \rightarrow \infty)$

- ~ +20%
- NNLL soft-gluon resumm.
- ~ NLO +20%

Effective Lagrangian (EFT) used in the large mt limit

TH uncertainties on gg -> HH

- scale uncertainty: ~ 20% at NLO (EFT)~ 10% at NNLO (EFT)
- PDF + αs: ~ 10%
- finite m_{top} effects: ~ 10 % (?)
- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \frac{\Delta\sigma}{\sigma} \simeq 0.6\% \frac{\Delta m_t}{1 \mathrm{GeV}} \end{aligned}$
- In two-loop calculation (hard) would help...

HH production in BSM

- significant enhancement in many BSM frameworks
 - HH resonant production (KK-gravitons, 2HDM, (N)MSSM,....)
 - potentially large cross section (up to pb)
 - mx shape helps with bckgrs

- HH non-resonant enhancement
 - Composite Higgs/Little Higgs/...
 - can modify λ or/and give rise to new couplings
 - can give strong enhancement at large $p_T(H)$
- analysis relevant also for Run 1

anomalous Higgs-top quartic coupling

non-resonant HH enhancement

$$\frac{d\hat{\sigma}(gg \to hh)}{d\hat{t}} = \frac{G_F^2 \alpha_s^2}{512(2\pi)^3} \left[\left| \left(c_{tri} \frac{3m_h^2}{\hat{s} - m_h^2} + c_{nl} \right) F_{\triangle} + c_{box} F_{\Box} \right|^2 + \left| c_{box} G_{\Box} \right|^2 \right]$$

$$c_{box}^{(SM)} = 1$$
, $c_{tri}^{(SM)} = 1$, $c_{nl}^{(SM)} = 0$

interferences between graphs \rightarrow degeneracies in σ' s

$$\sigma(gg \to hh) = \sigma^{SM}(gg \to hh)[1.849 \ c_{box}^2 + 0.201 \ c_{tri}^2 + 2.684 \ c_{nl}^2$$
$$-1.050 \ c_{box}c_{tri} - 3.974 \ c_{box}c_{nl} + 1.215 \ c_{tri}c_{nl}].$$

Chen, Low, arXiv:1405.7040

kinematic. distributions can help

Warning: a small C_{nl} could mimic effects from BSM C_{tri}

Chen, Low, arXiv:1405.7040

moderate sensitivity to C_{tri} (λ)

kinem information from two different Mhh bins allows for of a significant improvement in constraining Ctri wrt using the σ measurement alone.

Chen, Low, arXiv:1405.7040

$$\sqrt{s} = 100 \ TeV$$

sensitivity on self-coupling still the least!

(SM) HH rates at HL-LHC (ev/3000fb⁻¹)

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b} + \tau^+\tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + au^+ au^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma\gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

selection of HH final states has to account for:

(40.8 fb NNLO HH)

- final states experimentally clear and robust
- final states with large enough production rate

HH \rightarrow bbWW [large rates but $S(\sim 10^3)/B(tt pairs)\sim 10^{-4}]$

HH \rightarrow bbyy [clean but small rates], (also HH \rightarrow bb[TT,bb,ZZ, $\mu\mu$])

many studies ... results not yet robust!

Decay	Issues	Expectation 3000 ifb	References	
$b ar{b} \gamma \gamma$	 Signal small BKG large & difficult to asses Simple reconst. 	$S/B \simeq 1/3$ $S/\sqrt{B} \simeq 2.5$	[Baur, Plehn, Rainwater] [Yao 1308.6302] [Baglio et al. JHEP 1304]	
$b\bar{b}\tau^+\tau^-$	tau rec toughlargest bkg ttBoost+MT2 might help	differ a lot $S/B \simeq 1/5$ $S/\sqrt{B} \simeq 5$	[Dolan, Englert, MS] [Barr, Dolan, Englert, MS] [Baglio et al. JHEP 1304]	
$b\bar{b}W^+W^-$	 looks like tt Need semilep. W to rec. two H Boost + BDT proposed 	differ a lot best case: $S/B \simeq 1.5$ $S/\sqrt{B} \simeq 8.2$	[Dolan, Englert, MS] [Baglio et al. JHEP 1304] [Papaefstathiou, Yang, Zurita 1209.1489]	
$b \overline{b} b \overline{b}$	 Trigger issue (high pT kill signal) 4b background large difficult with MC Subjets might help 	$S/B \simeq 0.02$ $S/\sqrt{B} \le 2.0$	[Dolan, Englert, MS] [Ferreira de Lima, Papaefstathiou, MS] [Wardrope et al, 1410.2794]	
others	Many taus/W not clear if 2 HiggsZs, photons no rate			

16

5

resonant HH: Run 1 results (8 TeV)

narrow resonances from WED radion/graviton,2HDM

competitive with VV searches

ATLAS-CONF-2014-005 (bbbb)

CMS-PAS-HIG-14-013 (bbbb)

ATLAS arXiv:1406.5053 (γγbb)

Comparison of sensitivities (ATLAS+CMS)

best limits on cross section for $X\rightarrow HH$ in m_X range

380-600 GeV (921-93 fb) 700-970 GeV (136-23 fb)

HH -> bbyy

(Snowmass studies)

		HL-LHC	HE-LHC	VLHC
	\sqrt{s} (TeV)	14	33	100
	$\int \mathcal{L}dt \; (\mathrm{fb}^{-1})$	3000	3000	3000
$\sigma \cdot \mathrm{BR}$	$L(pp \to HH \to bb\gamma\gamma)$ (fb)	0.089	0.545	3.73
	S/\sqrt{B}	2.3	6.2	15.0
	$\lambda \; ({ m stat})$	50%	20%	8%

ATLAS at HL-LHC: HH → bbyy

ATL-PHYS-PUB-2014-019

combining "barrel" and "endcap" categories significance reaches ~ 1.30

Expected yields (3000 fb ⁻¹)	Total	Barrel	End-cap
Samples			
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=1)$	8.4±0.1	6.7±0.1	1.8±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	13.7 ± 0.2	10.7 ± 0.2	3.1±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=2)$	4.6 ± 0.1	3.7 ± 0.1	0.9±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	36.2 ± 0.8	27.9 ± 0.7	8.2±0.4
$bar{b}\gamma\gamma$	9.7±1.5	5.2±1.1	4.5±1.0
$car{c}\gamma\gamma$	7.0 ± 1.2	4.1±0.9	2.9±0.8
$bar{b}\gamma j$	8.4 ± 0.4	4.3 ± 0.2	4.1±0.2
$bar{b}jj$	1.3 ± 0.2	0.9 ± 0.1	0.4±0.1
$jj\gamma\gamma$	7.4 ± 1.8	5.2 ± 1.5	2.2±1.0
$t\bar{t} (\geq 1 \text{ lepton})$	0.2 ± 0.1	0.1 ± 0.1	0.1±0.1
$tar{t}\gamma$	3.2 ± 2.2	1.6±1.6	1.6±1.6
$t\bar{t}H(\gamma\gamma)$	6.1 ± 0.5	4.9 ± 0.4	1.2±0.2
$Z(bar{b})H(\gamma\gamma)$	2.7 ± 0.1	1.9 ± 0.1	0.8±0.1
$bar{b}H(\gamma\gamma)$	1.2 ± 0.1	1.0 ± 0.1	0.3±0.1
Total Background	47.1±3.5	29.1±2.7	18.0±2.3
$S/\sqrt{B}(\lambda/\lambda_{SM}=1)$	1.2	1.2	0.4

CMS at HL-LHC: HH -> bbWW

Data driven technique should constrain this to percent level

in conclusion...

a lot of work still needed to assess the actual HL-LHC sensitivity to $\lambda\ H^3$ coupling !

will likely benefit a lot from new exp strategies developed in Run 2 and knowledge of actual HL detector upgrades

(3σ significance (SM) / 3ab-1 doable?)

HH production in ete collisions

e+e- colliders

ILC TDR + Snowmass projections

		ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC1400	CLIC3000
$\sqrt{\varepsilon}$	GeV)	500	500	500/1000	500/1000	1400	3000
$\int \mathcal{L}$	$dt \text{ (fb}^{-1})$	500	1600^{\ddagger}	500 + 1000	$1600 + 2500^{\ddagger}$	1500	+2000
P((e^-, e^+)	(-0.8, 0.3)	(-0.8, 0.3)	(-0.8, 0.3/0.2)	(-0.8, 0.3/0.2)	(0,0)/(-0.8,0)	(0,0)/(-0.8,0)
σ ((ZHH)	42.7%		42.7%	23.7%	_	_
σ (uar u HH)	_	_	26.3%	16.7%		
	λ	83%	46%	21%	13%	28/21%	16/10%

based on bbbb and WWbb simulation at ILC and bbbb at CLIC

(to be improved - ongoing simulations)

needs full luminosity program!

Outlook

- Whigh the second of the sec
- tiny rates for HH prod. → very hard EXP (and TH) problem!
- "training" in Run 1 for searches of BSM-resonance signatures
- HL-LHC lumi needed to approach SM signal sensitivity

 (HH excellent benchmark for trigger/detector HL-LHC studies!)
- Sensitivity to individual channels low → need combination of many
- simulations in different HH decay channels ongoing in ATLAS and CMS to assess the actual potential of HL-LHC
- e+e- excellent potential, needs large cm energies (≥500 GeV)
 and high luminosities
- mandatory to extend studies to FCC-hh ...