#### Results from LED and 40K



## Timing measurement in the detector



- LED of the OM 11 of runs 684 to 687
- LED mean wavelength at 470 nm
- LED flash at 2 kHz

=> peaks observables within a modulo 500 us timing plot





## Timing measurement in the detector



- LED of the OM 11 was used
- LED mean wavelength at 470 nm
- LED flash at 2 kHz

=> peaks observables within a modulo 500 us timing plot





# Previous results summary



The distribution gives a good time distribution.

But the intensities in function of distance are not as expected

- LED positioning?
- LED homogeneity?
- LED used?
- Different intensities/LED in the same run?

A specific analysis is done to reduce the runs timing and LED

All the results on http://www.ge.infn.it/~chugon/NReader/documentation/html/Results.html



# Timing results

| Floor<br>number<br>(N)                                                                              | Measured propagation time with floor 1 (floor N-1) | Theoretical time with floor 1 (floor N-1) | Differential time<br>with floor 1<br>(floor N-1) |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------------|--|--|--|
| 1                                                                                                   | 0 +/- 0.5                                          | 0                                         | 0                                                |  |  |  |
| 2                                                                                                   | 174 (174) +/- 0.9                                  | 186 (186)                                 | 12 (12)                                          |  |  |  |
| 3                                                                                                   | 354 (179) +/- 0.5                                  | 371 (185)                                 | 17 (5)                                           |  |  |  |
| 4                                                                                                   | 550 (195) +/- 0.4                                  | 558 (187)                                 | 8 (-9)                                           |  |  |  |
| 5                                                                                                   | 740 (189) +/- 0.3                                  | 744 (186)                                 | 4 (-4)                                           |  |  |  |
| 6                                                                                                   | 929 (188) +/- 0.5                                  | 931 (187)                                 | 2 (-2)                                           |  |  |  |
| 7                                                                                                   | 1113 (182) +/-<br>0.72                             | 1118 (187)                                | 5 (-6)                                           |  |  |  |
| 8                                                                                                   | 1302 (175) +/-<br>0.75                             | 1305 (187)                                | 6 (1)                                            |  |  |  |
| As a cross check a lower intensity run was used for first floors. It correspond to 2.5 ns <=> 20 cm |                                                    |                                           |                                                  |  |  |  |



11/21/14

# Further studies of the LED run characteristics





#### Problem:

On the experimental tower of KM3-NeT-it, a single run can contain different LED test.

We need to filtrate it to do a proper analysis for

- absorption length (intensity)
- scattering length (wavelength, different for each floor)

The propagation in function of distance can be more understood for isolated LED tests.

Instead of taking the integrated charge, a calibrated number of pe should give a better results (work in progress)

N. Briukhanova



### Laser setup



Laser range with the designed glass rod



Laser Beacon installed at the base of the NEMO-PhaseII tower

- $\lambda = 532 \text{ nm}$   $\lambda_{\text{att}}(\lambda = 532) \sim 25 \text{ m} !!$
- no photo-detector close to the laser diode (yes in future)
- light propagation along the vertical not optimal for construction
  - calibrated the optical attenuator
  - measured differences  $\Delta t_{1-n}$ : O.K. up to 300m distance





#### Some results





# **NOTHING** from the 6<sup>th</sup> floor

Laser orientation?



# What the pulses look like?



Why the second floor is used for the "start" signal instead of the first?

- OM 11 ADC is saturated: Lower rate, bad timing.
- The laser does not hit well the first floor?
- OM 21 few ADC saturated: Usable rate and time
- OM61 is the latest floor, can be used to see a "normal" behavior, it is dominated by single photo-electron (almost no laser pulse reach it).



#### Conclusion

- The laser run present some difficulties
  - No good start time
  - Does not hit all of the PM
- New Laser design needs to include a precise start time (under developing by Roma group)
- Can be interesting to do a test with the PPM-DOM



# Water properties status

#### **Principle illustration**



- Concentric detection sphere
  - Separated by the real floor to floor distance
- The source is in the center
- Send photons
- All the photons are kept at each level. Data kept
  - Emission direction (in fact always (0,0,1)
  - Time arrival at each sphere
  - Angle arrival
  - Incident angle
- Then the AA and LED emission are used to put a weigh to the arrival



#### First results



- We are strongly dominated by the Kopelevitch scattering (on big particles)
- The ES scattering (on molecules) can be neglected in the peak zone
- The Kopelevitch scattering should be the one that vary (dependent on sediments, plankton..., while the ES is principally dependent on the middle density)



# Current very preliminary results ongoing work

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.8-0.9 x ANTARES one









## <sup>40</sup>K single rate in NEMO: The data



### Single rate from random samples:

The baseline is extracted from samples of 1 hour (without selection) per month.

The samples showed a very good stability. Excluding the burst, almost no variation, It seems that there is a very low bioluminescence constant background.



# <sup>40</sup>K single rate in NEMO and ANTARES





#### Parameters

#### Absorption length for NEMO and ANTARES sites' simulation



The single rates are independent of the scattering!



#### Simulation and data confrontation

| Detector          | set              | 2009                       | 2010                   | 2011                   | 2012              |
|-------------------|------------------|----------------------------|------------------------|------------------------|-------------------|
|                   | coincidence rate | $15.8~\mathrm{Hz}$         | $15.5~\mathrm{Hz}$     | $14.82~\mathrm{Hz}$    | X                 |
| ANTARES           | simulation       | $43 \pm 3 \text{ kHz}$     | $42 \pm 3 \text{ kHz}$ | $41 \pm 3 \text{ kHz}$ | X                 |
|                   | data             | $51~\mathrm{kHz}$          | $49~\mathrm{kHz}$      | $46~\mathrm{kHz}$      | $47~\mathrm{kHz}$ |
|                   | diff             | 8 kHz $(2.7 \sigma)$       | 7 kHz $(2.3 \sigma)$   | 5 kHz $(1.7 \sigma)$   | X                 |
|                   | coincidence rate | X                          | 21.6                   | $_{ m Hz}$             | X                 |
| ${ m KM3NeT}$ -it | simulation       | $X 	 54 \pm 3 \text{ kHz}$ |                        | X                      |                   |
|                   | data             | X = 52  kHz                |                        | X                      |                   |
|                   | diff             | X                          | -2 kHz $(0.7 \sigma)$  |                        | X                 |

The <sup>40</sup>K coincidence rate is used to calibrate the simulation, We observe a regular decrease of the efficiency. We consider 3 kHz of noise for ANTARES and 3.6 kHz for NEMO (glass <sup>40</sup>K and dark current)

The ANTARES rate is in agreement with the numerical calculus (J. Brunner) An underestimation of the ANTARES rates is observed. A very good agreement is found for NEMO



# Backup





#### Previous conclusion

- The LED can be used for time calibration, even at high light intensity (first floors)
- The fitting method:
  - Improved the resolution to the ns
  - I need the positioning to go further.
- The scattering can be studied, needs the simulation (see tomorrow slides)

Checked up to 320 m distance



# Test for a wider time range of runs

- Check evolution of the time calibration
  - While the day
  - While the year
- A lot of LED runs were done, but
  - In many runs different LED intensity were used
  - In many runs different LED were used
- Not all of them are yet usable, need more investigation if we want do go further



# Summary of the LED run infos

| Run nb | date       | Lower floor signal | Higher<br>floor signal | Has been analyzed |
|--------|------------|--------------------|------------------------|-------------------|
| 0684   | 2013-05-30 | 1                  | 8                      | X                 |
| 0687   | 2013-05-30 | 1                  | 4                      |                   |
| 1359   | 2013-09-24 | 4                  | 8                      |                   |
| 1364   | 2013-09-25 | 3                  | 8                      |                   |
| 1439   | 2013-10-07 | 1                  | 8                      |                   |
| 1440   | 2013-10-07 | 1-4                | 8                      |                   |
| 1442   | 2013-10-07 | 1-4                | 8                      |                   |
| []     |            | 1                  | 8                      | X                 |
| 1451   | 2013-10-07 | 1                  | 8                      | X                 |
| 1454   | 2013-10-08 | 1                  | 7                      |                   |
| 1455   | 2013-10-08 | 3                  | 8                      |                   |
| 1456   | 2013-10-08 | 3                  | 8                      |                   |
| 1458   | 2013-10-08 | 4                  | 8                      |                   |
| 2701   | 2014-04-22 | 1                  | 8                      | X                 |
| 2703   | 2014-04-23 |                    | 8                      |                   |
|        |            |                    |                        |                   |

- 3 different dates has been analyzed yet (6 month separated)
- 9 runs while the same day was analyzed

Allow to know the time evolution of the bars on different time range



# Some example of the evolution



In general, during long period the shifting time is < 10 ns Compatible expected structure movement



# Some example of the evolution



While the day the OMs position can change by few meters



# Perspectives

- Can be interesting to cross-check with positioning, compass etc...
- More run could be used, but it needs
  - More time
  - specific analysis to isolated the LED time

The results seems to be promising for the **KM3NeT LED time calibrition** 



### Laser setup



Laser range with the designed glass rod



Laser Beacon installed at the base of the NEMO-PhaseII tower

- $\lambda = 532 \text{ nm}$   $\lambda_{\text{att}}(\lambda = 532) \sim 25 \text{ m} !!$
- no photo-detector close to the laser diode (yes in future)
- light propagation along the vertical not optimal for construction
  - calibrated the optical attenuator
  - measured differences  $\Delta t_{1-n}$ : O.K. up to 300m distance





#### Some results





# **NOTHING** from the 6<sup>th</sup> floor

Laser orientation?



# What the pulses look like?



Why the second floor is used for the "start" signal instead of the first?

- OM 11 ADC is saturated: Lower rate, bad timing.
- The laser does not hit well the first floor?
- OM 21 few ADC saturated: Usable rate and time
- OM61 is the latest floor, can be used to see a "normal" behavior, it is dominated by single photo-electron (almost no laser pulse reach it).



#### Conclusion

- The laser run present some difficulties
  - No good start time
  - Does not hit all of the PM
- New Laser design needs to include a precise start time (under developing by Roma group)
- Can be interesting to do a test with the PPM-DOM



# Coriolis parenthesis



While I looked for the LED runs on the slow control OM rate, I saw this on every Oms

- Coriolis force ?
  - Calculated period ~20h
  - Measured period =24 h
- Activity based on the sun period?
  - · Bio activity?
  - Deep Current ?
  - Yellow submarine ?

• ...

If somebody want to explore it, there is some interesting things to do

- Cross check with the current components
- Check if there is a link with the PM positioning (plankton hits on the face/back)

The Slow control will be soon integrated in Nreader (intership)



Title 1 Title 2 **KM3NeT** INFN Christophe Hugon 11/21/14 Genova 30





