Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Lorenzo Tancredi

TTP, KIT - Karlsruhe

Bologna, 18 Novembre 2014

Based on collaboration with Thomas Gehrmann, Andreas von Manteuffel, Pierpaolo Mastrolia, Ettore Remiddi,...

Introduction

- Present understanding of the physical world through Standard Model of particle physics (SM).
- Most of the predictions that we can extract from the SM are based on perturbative calculations (as in most fields of physics!).
- Physical observables are computed perturbatively by Expansion in Feynman Diagrams.
- Computation of Feynman Diagrams is of fundamental importance for getting precise predictions from the Standard Model!
- Any Feynman Diagrams is (after some tedious but elementary algebra!) nothing but a collection of scalar Feynman Integrals

$$
\text { with } \quad q_{2}=p_{1}+p_{2}-q_{1}
$$

A (possible) representation in momentum space (massless case!)

$$
\mathcal{I}\left(p_{1}, p_{2}, q_{1}\right)=\int \frac{\mathcal{D}^{d} k \mathcal{D}^{d} I}{k^{2} I^{2}(k-I)^{2}\left(k-p_{1}\right)^{2}\left(k-p_{12}\right)^{2}\left(I-p_{12}\right)^{2}\left(I-q_{1}\right)^{2}}
$$

Typical 2-loop Feynman Integral required for the computation of a $2 \rightarrow 2$ scattering process.

We will discuss how such integrals can be (tentatively!) computed analytically.

1. Integrals are ill-defined in $d=4 \rightarrow$ need a regularization procedure!
2. Use of dimensional regularization to regulate UV and IR divergences.
3. Dimensional regularisation turned out to be much MORE than just a regularization scheme!

Dimensionally regularized Feynman integrals always converge!
This allows to derive a large number of unexpected relations...

- Integration by Parts, Lorentz invariance identities, Schouten Identities,... differential equations!

We will discuss how such integrals can be (tentatively!) computed analytically.

1. Integrals are ill-defined in $d=4 \rightarrow$ need a regularization procedure!
2. Use of dimensional regularization to regulate UV and IR divergences.
3. Dimensional regularisation turned out to be much MORE than just a regularization scheme!
\Downarrow

Dimensionally regularized Feynman integrals always converge!
This allows to derive a large number of unexpected relations...

- Integration by Parts, Lorentz invariance identities, Schouten Identities, differential equations!

We will discuss how such integrals can be (tentatively!) computed analytically.

1. Integrals are ill-defined in $d=4 \rightarrow$ need a regularization procedure!
2. Use of dimensional regularization to regulate UV and IR divergences.
3. Dimensional regularisation turned out to be much MORE than just a regularization scheme!

Dimensionally regularized Feynman integrals always converge!
This allows to derive a large number of unexpected relations...

- Integration by Parts, Lorentz invariance identities, Schouten Identities,... $\rightarrow \quad$ differential equations!

This large set of identities makes it simpler to compute Feynman integrals in d continuous dimensions than in $d=4$!

A general scalar Feynman Integral (I-loops) can be written as

where

$$
D_{n}=\left(q_{n}^{2}+m_{n}^{2}\right), \quad \text { are the propagators }
$$

$S_{n}=k_{i} \cdot p_{j}, \quad$ are scalar products among internal and external momenta

This introduces the concept of Topology

This large set of identities makes it simpler to compute Feynman integrals in d continuous dimensions than in $d=4$!

A general scalar Feynman Integral (I-loops) can be written as

$$
\mathcal{I}\left(\sigma_{1}, \ldots, \sigma_{s} ; \alpha_{1}, \ldots, \alpha_{n}\right)=\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}} \frac{S_{1}^{\sigma_{1}} \ldots S_{s}^{\sigma_{s}}}{D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}}
$$

where

$$
D_{n}=\left(q_{n}^{2}+m_{n}^{2}\right), \quad \text { are the propagators }
$$

$S_{n}=k_{i} \cdot p_{j}, \quad$ are scalar products among internal and external momenta

This introduces the concept of Topology

1. Integration By Parts Identities (IBPs)

$$
\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}}\left(\frac{\partial}{\partial k_{j}^{\mu}} v_{\mu} \frac{S_{1}^{\sigma_{1}} \ldots S_{s}^{\sigma_{s}}}{D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}}\right)=0, \quad v^{\mu}=k_{j}^{\mu}, p_{k}^{\mu}
$$

2. They generate huge systems of linear equations which relates integrals with different powers of numerators and denominators.
3. The integrals always belong to the same topology, as defined above.

Inverting the IBPs we can express all Feynman Integrals in terms of a subset of basic integrals called Master Integrals (MIs).

- This was originally done with generic "symbolic" powers of denominators \rightarrow becomes soon prohibitive.
- Can be automatised for numerical powers of denominators by the Laporta Algorithm (S. Laporta).

In typical applications to 2 -loop $2 \rightarrow 2$ processes one has \approx thousands of scalar integrals to compute, which are reduced in this way to \approx tens of MIs.

The are very powerful public codes to do this automatically:
Reduze2, FIRE5, AIR,

Inverting the IBPs we can express all Feynman Integrals in terms of a subset of basic integrals called Master Integrals (MIs).

- This was originally done with generic "symbolic" powers of denominators \rightarrow becomes soon prohibitive.
- Can be automatised for numerical powers of denominators by the Laporta Algorithm (S. Laporta).
\Downarrow
In typical applications to 2 -loop $2 \rightarrow 2$ processes one has \approx thousands of scalar integrals to compute, which are reduced in this way to \approx tens of MIs.

The are very powerful public codes to do this automatically:
Reduze2, FIRE5, AIR,...

Important Remark: The choice of the BASIS of MIs (which scalar integrals are chosen to be MIs in the Laporta Algorithm!) is ambiguous!

$$
\Downarrow
$$

> Choosing the basis of MIs in a "stupid" way, may make the intermediate expressions blow up considerably!

1. What does it mean choosing the basis properly?
2. How can we know a priori which basis is good and which one is bad? Physical cuts \rightarrow NO spurious non-physical singularities in the game!

Important Remark: The choice of the BASIS of MIs (which scalar integrals are chosen to be MIs in the Laporta Algorithm!) is ambiguous!

$$
\Downarrow
$$

Choosing the basis of MIs in a "stupid" way, may make the intermediate expressions blow up considerably!

1. What does it mean choosing the basis properly?
2. How can we know a priori which basis is good and which one is bad?

Physical cuts \rightarrow NO spurious non-physical singularities in the game!

Important Remark: The choice of the BASIS of MIs (which scalar integrals are chosen to be MIs in the Laporta Algorithm!) is ambiguous!

$$
\Downarrow
$$

Choosing the basis of MIs in a "stupid" way, may make the intermediate expressions blow up considerably!

1. What does it mean choosing the basis properly?
2. How can we know a priori which basis is good and which one is bad?

Physical cuts \rightarrow NO spurious non-physical singularities in the game!

Dimensionally regularised Feynman Integrals fulfil differential equations! [Kotikov, Remiddi, Gehrmann,...]

Let us take a Feynman integral which depends on two external invariants

$$
p^{2}, m^{2} \quad \rightarrow x=\frac{p^{2}}{m^{2}}
$$

$\mathcal{I}\left(p^{2}, m^{2}\right)=\int \prod_{j=1}^{l} \frac{d^{d} k_{j}}{(2 \pi)^{d}} \frac{1}{D_{1} \ldots D_{n}}, \quad$ (with scalar products generalisation trivial)

Consider now the integral with generic powers of the denominators

Dimensionally regularised Feynman Integrals fulfil differential equations! [Kotikov, Remiddi, Gehrmann,...]

Let us take a Feynman integral which depends on two external invariants

$$
p^{2}, m^{2} \quad \rightarrow x=\frac{p^{2}}{m^{2}}
$$

$\mathcal{I}\left(p^{2}, m^{2}\right)=\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}} \frac{1}{D_{1} \ldots D_{n}}$,
(with scalar products generalisation trivial)

Consider now the integral with generic powers of the denominators

$$
\mathcal{I}\left(p^{2}, m^{2} ; \alpha_{1}, \ldots, \alpha_{n}\right)=\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}} \frac{1}{D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}}
$$

Suppose that, by exploiting the IBPs identities above, one can prove that any integral can be expressed as a linear combination of say N Mls.

$$
m_{1}\left(p^{2} ; d\right), \quad m_{2}\left(p^{2} ; d\right), \ldots, \quad m_{N}\left(p^{2} ; d\right)
$$

Such that any integral can be written

$$
\mathcal{I}\left(p^{2}, m^{2} ; \alpha_{1}, \ldots, \alpha_{n}\right)=\sum_{j=1}^{N} C_{j}\left(p^{2} ; d\right) m_{j}\left(p^{2} ; d\right)
$$

1. $C_{j}\left(p^{2} ; d\right)$ are rational functions which dependent only on p^{2} and d.

This information can be exploited to derived differential equations for the m_{j}.

1. Differentiation w.r.t to an external invariant \rightarrow differentiation w.r.t to external momenta

$$
p^{2}=p_{\mu} p^{\mu} \quad \rightarrow \quad \frac{\partial}{\partial p^{2}}=\frac{1}{2 p^{2}}\left(p^{\mu} \frac{\partial}{\partial p^{\mu}}\right)
$$

2. Applying differential operator on Feynman integral (say on m_{1}) we get a linear combination of new integrals with the same propagators but raised to different powers.
3. These new integrals can be in turn reduced to the same MIs!

$$
\frac{\partial}{\partial p^{2}} m_{1}\left(p^{2} ; d\right)=\sum_{j=1}^{N} c_{1 j}\left(p^{2} ; d\right) m_{j}\left(p^{2} ; d\right)
$$

1. Differentiation w.r.t to an external invariant \rightarrow differentiation w.r.t to external momenta

$$
p^{2}=p_{\mu} p^{\mu} \quad \rightarrow \quad \frac{\partial}{\partial p^{2}}=\frac{1}{2 p^{2}}\left(p^{\mu} \frac{\partial}{\partial p^{\mu}}\right)
$$

2. Applying differential operator on Feynman integral (say on m_{1}) we get a linear combination of new integrals with the same propagators but raised to different powers.
3. These new integrals can be in turn reduced to the same MIs!

$$
\frac{\partial}{\partial p^{2}} m_{1}\left(p^{2} ; d\right)=\sum_{j=1}^{N} c_{1 j}\left(p^{2} ; d\right) m_{j}\left(p^{2} ; d\right)
$$

This is a differential equation for $m_{1}\left(p^{2} ; d\right)!!!$

Repeating the procedure for all N MIs one get a system of linear differential equations in the external invariant p^{2}

$$
\frac{\partial}{\partial p^{2}}\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 N} \\
\ldots & \ldots & \ldots \\
c_{N 1} & \ldots & c_{N N}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)
$$

where the $c_{i j}\left(p^{2} ; d\right)$ are only rational functions of p^{2} and of d.

- Supplemented with N boundary conditions, these equations allow, in principle, to compute all master integrals!

Is this really easier than attempting a direct integration?

Repeating the procedure for all N MIs one get a system of linear differential equations in the external invariant p^{2}

$$
\frac{\partial}{\partial p^{2}}\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 N} \\
\ldots & \ldots & \ldots \\
c_{N 1} & \ldots & c_{N N}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)
$$

where the $c_{i j}\left(p^{2} ; d\right)$ are only rational functions of p^{2} and of d.

- Supplemented with N boundary conditions, these equations allow, in principle, to compute all master integrals!

Is this really easier than attempting a direct integration?

Makes the expansion in $d \rightarrow 4$ (or any other integer dimension) trivial...

What if $\mathrm{N}=1$? (There is only 1 MI)

If there is only 1 master integral the situation is in principle trivial:

$$
\frac{\partial}{\partial p^{2}} m\left(p^{2} ; d\right)=c\left(p^{2} ; d\right) m\left(p^{2} ; d\right)
$$

Expanding in $d \rightarrow 4$ (we can rescale to make everything finite!)

$$
\begin{aligned}
m\left(p^{2} ; d\right) & =m^{(0)}\left(p^{2}\right)+(d-4) m^{(1)}\left(p^{2}\right)+\ldots \\
c\left(p^{2} ; d\right) & =c^{(0)}\left(p^{2}\right)+(d-4) c^{(1)}\left(p^{2}\right)+\ldots \\
\frac{\partial}{\partial p^{2}} m^{(0)}\left(p^{2}\right) & =c^{(0)}\left(p^{2}\right) m^{(0)}\left(p^{2}\right), \\
\frac{\partial}{\partial p^{2}} m^{(1)}\left(p^{2}\right) & =c^{(0)}\left(p^{2}\right) m^{(1)}\left(p^{2}\right)+c^{(1)}\left(p^{2}\right) m^{(0)}\left(p^{2}\right),
\end{aligned}
$$

Chained system of differential equations which can be solved by quadrature order-by-order in $(d-4)$.

What if $\mathbf{N}>1$? (Life is not that easy anymore!)

If the system is coupled, it corresponds to a N -th order differential equation for any of the MIs. No general strategy for a solution is known.

Observations

1. We are free of choosing our basis of MIs!
2. We are interested in the exnansion for $d \rightarrow 4$!

Changing the basis can simplify the structure of the differential equations!
At least in the limit for $d \rightarrow 4$!

What if $\mathbf{N}>1$? (Life is not that easy anymore!)

If the system is coupled, it corresponds to a N -th order differential equation for any of the Mls. No general strategy for a solution is known.
\Downarrow

Observations

1. We are free of choosing our basis of MIs!
2. We are interested in the expansion for $d \rightarrow 4$!

Changing the basis can simplify the structure of the differential equations!
At least in the limit for $d \rightarrow 4$!

What if $\mathbf{N}>1$? (Life is not that easy anymore!)

If the system is coupled, it corresponds to a N -th order differential equation for any of the Mls. No general strategy for a solution is known.
\Downarrow

Observations

1. We are free of choosing our basis of MIs!
2. We are interested in the expansion for $d \rightarrow 4$!
\Downarrow
Changing the basis can simplify the structure of the differential equations!

$$
\text { At least in the limit for } d \rightarrow 4 \text { ! }
$$

We can very often find a basis of MIs where the equations become triangular as $d \rightarrow 4$.

$$
\frac{\partial}{\partial p^{2}}\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)=\left(\begin{array}{cccc}
c_{11}^{(0)} & c_{12}^{(0)} & \ldots & c_{1 N}^{(0)} \\
0 & c_{22}^{(0)} & \ldots & c_{2 N}^{(0)} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & c_{N N}^{(0)}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)+\mathcal{O}(d-4)
$$

This reduces, in principle, the problem to the case $N=1$

$$
\Downarrow
$$

In order to obtain expansion in $(d-4)$ we must perform many repeated integrations by quadrature!

We can do better \rightarrow Canonical Form by J. Henn

Suppose we are able to find a basis of Master Intergrals such that the system of differential equations takes the following form:

$$
\frac{\partial}{\partial p^{2}}\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)=(d-4)\left(\begin{array}{ccc}
c_{11}\left(p^{2}\right) & \ldots & c_{1 N}\left(p^{2}\right) \\
c_{21}\left(p^{2}\right) & \ldots & c_{2 N}\left(p^{2}\right) \\
\ldots & \ldots & \ldots \\
c_{N 1}\left(p^{2}\right) & \ldots & c_{N N}\left(p^{2}\right)
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)
$$

So that the dependence from the kinematics is factorised from d !

We can do better \rightarrow Canonical Form by J. Henn

Suppose we are able to find a basis of Master Intergrals such that the system of differential equations takes the following form:

$$
\frac{\partial}{\partial p^{2}}\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)=(d-4)\left(\begin{array}{ccc}
c_{11}\left(p^{2}\right) & \ldots & c_{1 N}\left(p^{2}\right) \\
c_{21}\left(p^{2}\right) & \ldots & c_{2 N}\left(p^{2}\right) \\
\ldots & \ldots & \ldots \\
c_{N 1}\left(p^{2}\right) & \ldots & c_{N N}\left(p^{2}\right)
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\ldots \\
m_{N}
\end{array}\right)
$$

So that the dependence from the kinematics is factorised from d !

Plus, the functions $c_{j k}\left(p^{2}\right)$ must be in d-log form, i.e.

$$
\int^{p^{2}} d t c_{j k}(t) \propto \ln \left(f\left(p^{2}\right)\right)
$$

If the differential equations are in canonical form

$$
\begin{aligned}
\partial_{x} f(d, x)= & (d-4) A(x) f(d, x), \quad \text { with } \quad A(x) \text { in } d \log \text { form } \\
& \rightarrow d f(d, x)=(d-4) d \tilde{A}(x) f(d, x)
\end{aligned}
$$

- We can trivially integrate the equations order-by-order in $(d-4)$
- Order-by-order the result is expressed as multiple polylogarithms only \longrightarrow NO rational factors!
- Order-by-order the result has uniform degree of transcendentality

Formal solution as path-ordered exponential

$$
f=P \mathrm{e}^{(d-4) \int_{C} d \tilde{A}} f_{0} \quad \rightarrow \quad f_{0} \text { boundary condition }
$$

If the differential equations are in canonical form

$$
\begin{aligned}
\partial_{x} f(d, x)= & (d-4) A(x) f(d, x), \quad \text { with } \quad A(x) \text { in } d \log \text { form } \\
& \rightarrow d f(d, x)=(d-4) d \tilde{A}(x) f(d, x)
\end{aligned}
$$

- We can trivially integrate the equations order-by-order in $(d-4)$
- Order-by-order the result is expressed as multiple polylogarithms only \longrightarrow NO rational factors!
- Order-by-order the result has uniform degree of transcendentality

$$
f(d, x)=1+(d-4) \ln (x)+(d-4)^{2}\left(\frac{\pi^{2}}{6}-L i_{2}(x)+\frac{1}{2} \ln ^{2}(x)\right)+\ldots
$$

Formal solution as path-ordered exponential
$f=P e^{(d-4) \int_{C} d \tilde{A}} f_{0} \rightarrow f_{0}$ boundary condition

If the differential equations are in canonical form

$$
\begin{aligned}
\partial_{x} f(d, x)= & (d-4) A(x) f(d, x), \quad \text { with } \quad A(x) \text { in } d \log \text { form } \\
& \rightarrow d f(d, x)=(d-4) d \tilde{A}(x) f(d, x)
\end{aligned}
$$

- We can trivially integrate the equations order-by-order in $(d-4)$
- Order-by-order the result is expressed as multiple polylogarithms only \longrightarrow NO rational factors!
- Order-by-order the result has uniform degree of transcendentality

$$
f(d, x)=1+(d-4) \ln (x)+(d-4)^{2}\left(\frac{\pi^{2}}{6}-L i_{2}(x)+\frac{1}{2} \ln ^{2}(x)\right)+\ldots
$$

Formal solution as path-ordered exponential

$$
f=P \mathrm{e}^{(d-4) \int_{C} d \tilde{A}} f_{0} \quad \rightarrow \quad f_{0} \text { boundary condition }
$$

This goes back to original question: how do we define a good basis of MIs?

1. It was observed that if differential equations are in canonical form, then MIs have only physical cuts! (no proof here but common sense!)
2. So the canonical basis really seems to be the right thing to do!

- Makes straightformard the solution of the differential equations! - Makes more compact the expression of any integral in terms of MIs!
- They do not introduce any spurious singularities!

3. Can we always find such basis? And how?

This goes back to original question: how do we define a good basis of MIs?

1. It was observed that if differential equations are in canonical form, then Mls have only physical cuts! (no proof here but common sense!)
2. So the canonical basis really seems to be the right thing to do!

- Makes straightforward the solution of the differential equations!
- Makes more compact the expression of any integral in terms of MIs!

$$
\Downarrow
$$

- They do not introduce any spurious singularities!

3. Can we always find such basis? And how?

Guiding criteria to choose a canonical basis by J.Henn

- Look at the Maximal Cut
- Check the Leading singularity
- Direct inspection through representation in Feynman parameters.

Magnus Expansion [Argeri, Vita, Mastrolia, Mirabella, Schlenk, Schubert, L.T.]

- Consider a linear system of differential equations

$$
\partial_{x} f\left(d^{\prime}, x\right)=A\left(d^{\prime}, x\right) f\left(d^{\prime}, x\right), \quad \rightarrow \quad f\left(d^{\prime}, x\right) \text { is the vector of MIs }
$$

- Assume that $A(d, x)$ is linear in d. The system can be therefore written as

$$
\partial_{x} f\left(d^{\prime}, x\right)=A_{0}(x) f\left(d^{\prime}, x\right)+\left(d^{\prime}-4\right) A_{1}(x) f\left(d^{\prime}, x\right)
$$

- Change then basis of MIs as

$$
f\left(d^{\prime}, x\right)=B_{0}(x) g\left(d^{\prime}, x\right), \quad \text { such that } \quad B_{0}(x)=e^{\Omega\left[A_{0}\right](x)}
$$

where $\Omega\left[A_{0}\right](x)$ is defined through the Magnus expansion:

$$
\Omega\left[A_{0}\right](x)=\sum_{n=1}^{\infty} \Omega_{n}\left[A_{0}\right](x)
$$

Magnus Expansion [Argeri, Vita, Mastrolia, Mirabella, Schlenk, Schubert, L.T.]

- Consider a linear system of differential equations

$$
\partial_{x} f(d, x)=A(d, x) f(d, x), \quad \rightarrow \quad \mathrm{f}(\mathrm{~d}, \mathrm{x}) \text { is the vector of MIs }
$$

- Assume that $A(d, x)$ is linear in d. The system can be therefore written as

$$
\partial_{x} f(d, x)=A_{0}(x) f(d, x)+(d-1) A_{1}(x) f(d, x)
$$

- Change then basis of MIs as

$$
f\left(d^{\prime}, x\right)=B_{0}(x) g\left(d^{\prime}, x\right), \quad \text { such that } \quad B_{0}(x)=e^{\Omega\left[A_{0}\right](x)}
$$

where $\Omega\left[A_{0}\right](x)$ is defined through the Magnus expansion:

Magnus Expansion [Argeri, Vita, Mastrolia, Mirabella, Schlenk, Schubert, L.T.]

- Consider a linear system of differential equations

$$
\partial_{x} f(d, x)=A(d, x) f(d, x), \quad \rightarrow \quad \mathrm{f}(\mathrm{~d}, \mathrm{x}) \text { is the vector of MIs }
$$

- Assume that $A(d, x)$ is linear in d. The system can be therefore written as

$$
\partial_{x} f(d, x)=A_{0}(x) f(d, x)+(d-4) A_{1}(x) f(d, x)
$$

- Change then basis of MIs as

$$
f\left(d^{\prime}, x\right)=B_{0}(x) g\left(d^{\prime}, x\right), \quad \text { such that } \quad B_{0}(x)=e^{\Omega\left[A_{0}\right](x)}
$$

where $\Omega\left[A_{0}\right](x)$ is defined through the Magnus expansion:

Magnus Expansion [Argeri, Vita, Mastrolia, Mirabella, Schlenk, Schubert, L.T.]

- Consider a linear system of differential equations

$$
\partial_{x} f(d, x)=A(d, x) f(d, x), \quad \rightarrow \quad \mathrm{f}(\mathrm{~d}, \mathrm{x}) \text { is the vector of MIs }
$$

- Assume that $A(d, x)$ is linear in d. The system can be therefore written as

$$
\partial_{x} f(d, x)=A_{0}(x) f(d, x)+(d-4) A_{1}(x) f(d, x)
$$

- Change then basis of MIs as

$$
f(d, x)=B_{0}(x) g(d, x), \quad \text { such that } \quad B_{0}(x)=e^{\Omega\left[A_{0}\right](x)}
$$

where $\Omega\left[A_{0}\right](x)$ is defined through the Magnus expansion:

$$
\Omega\left[A_{0}\right](x)=\sum_{n=1}^{\infty} \Omega_{n}\left[A_{0}\right](x)
$$

The different terms can be obtained from $A_{0}(x)$ as:
1.

$$
\Omega_{1}\left[A_{0}\right](x)=\int_{x_{0}}^{x} d \tau_{1} A_{0}\left(\tau_{1}\right)
$$

2.

$$
\Omega_{2}\left[A_{0}\right](x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A_{0}\left(\tau_{1}\right), A_{0}\left(\tau_{2}\right)\right]
$$

3.

$$
\begin{aligned}
\Omega_{3}\left[A_{0}\right](x)=\frac{1}{6} \int_{x_{0}}^{x} d \tau_{1} & \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3} \\
& \times\left(\left[A_{0}\left(\tau_{1}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{3}\right)\right]\right]+\left[A_{0}\left(\tau_{3}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{1}\right)\right]\right]\right)
\end{aligned}
$$

By definition one finds

$$
\partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x), \quad \text { and } \quad \partial x g(d, x)=(d-4) \hat{A}_{1}(x) g(d, x)
$$

with
$\hat{A}_{1}(x)=B_{0}^{-1}(x) A_{0}(x) B_{0}(x)$.

The different terms can be obtained from $A_{0}(x)$ as:
1.

$$
\Omega_{1}\left[A_{0}\right](x)=\int_{x_{0}}^{x} d \tau_{1} A_{0}\left(\tau_{1}\right)
$$

2.

$$
\Omega_{2}\left[A_{0}\right](x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A_{0}\left(\tau_{1}\right), A_{0}\left(\tau_{2}\right)\right]
$$

3.

$$
\begin{aligned}
\Omega_{3}\left[A_{0}\right](x)=\frac{1}{6} \int_{x_{0}}^{x} d \tau_{1} & \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3} \\
& \times\left(\left[A_{0}\left(\tau_{1}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{3}\right)\right]\right]+\left[A_{0}\left(\tau_{3}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{1}\right)\right]\right]\right)
\end{aligned}
$$

By definition one finds

$$
\partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x), \quad \text { and } \quad \partial_{x} g(d, x)=(d-4) \hat{A}_{1}(x) g(d, x)
$$

with

$$
\hat{A}_{1}(x)=B_{0}^{-1}(x) A_{0}(x) B_{0}(x)
$$

The different terms can be obtained from $A_{0}(x)$ as:
1.

$$
\Omega_{1}\left[A_{0}\right](x)=\int_{x_{0}}^{x} d \tau_{1} A_{0}\left(\tau_{1}\right)
$$

2.

$$
\Omega_{2}\left[A_{0}\right](x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A_{0}\left(\tau_{1}\right), A_{0}\left(\tau_{2}\right)\right]
$$

3.

$$
\begin{aligned}
\Omega_{3}\left[A_{0}\right](x)=\frac{1}{6} \int_{x_{0}}^{x} d \tau_{1} & \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3} \\
& \times\left(\left[A_{0}\left(\tau_{1}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{3}\right)\right]\right]+\left[A_{0}\left(\tau_{3}\right),\left[A_{0}\left(\tau_{2}\right), A_{0}\left(\tau_{1}\right)\right]\right]\right)
\end{aligned}
$$

By definition one finds

$$
\partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x), \quad \text { and } \quad \partial_{x} g(d, x)=(d-4) \hat{A}_{1}(x) g(d, x)
$$

with

$$
\hat{A}_{1}(x)=B_{0}^{-1}(x) A_{0}(x) B_{0}(x)
$$

If the Magnus expansion converges in a finite number of steps we might end up with a canonical form!

This is to me somewhat unsatisfactory

1. Can we always obtain such linear form in d ? Is it enough?
2. If not, how do we distinguish case when we can and when we cannot?
3. How do we know if, applying any of these tricks, we will get anywhere?

What has become clear (at least in my opinion) is that
\square is obtainable with limited effort [T. Gehrmann, A. Manteuffel, L.T., E. Weihs].
2. It has to be a property that one can see at once from the differential equations themselves!

Linear systems of differential equations with rational coefficients? [R.Lee]

This is to me somewhat unsatisfactory

1. Can we always obtain such linear form in d ? Is it enough?
2. If not, how do we distinguish case when we can and when we cannot?
3. How do we know if, applying any of these tricks, we will get anywhere?

What has become clear (at least in my opinion) is that

1. if we have a basis where the DE are in triangular form \rightarrow canonical basis is obtainable with limited effort [T. Gehrmann, A. Manteuffel, L.T., E. Weihs].
2. It has to be a property that one can see at once from the differential equations themselves!

Linear systems of differential equations with rational coefficients? [R.Lee]

Seems to be a property connected to the expansion for $d \rightarrow 4$ which is equivalent to the expansion for $d \rightarrow 2 n$, any (even) integer number of dimensions (Tarasov-Lee, see later on...)!

Schouten Identities in $d=n$ with $n \in \mathbb{N}$ [E.Remiddi, L.T.]

4. And so on in $d=4, d=5, \ldots$

Seems to be a property connected to the expansion for $d \rightarrow 4$ which is equivalent to the expansion for $d \rightarrow 2 n$, any (even) integer number of dimensions (Tarasov-Lee, see later on...)!

Schouten Identities in $d=n$ with $n \in \mathbb{N}$ [E.Remiddi, L.T.]

Seems to be a property connected to the expansion for $d \rightarrow 4$ which is equivalent to the expansion for $d \rightarrow 2 n$, any (even) integer number of dimensions (Tarasov-Lee, see later on...)!

Schouten Identities in $d=n$ with $n \in \mathbb{N}$ [E.Remiddi, L.T.]

1. $d=1$ dimension:
a^{μ}, b^{μ} cannot be independent $\rightarrow a^{\mu} b^{\nu} \epsilon_{\mu \nu}=0$.
2. $d=2$ dimensions:
$a^{\mu}, b^{\mu}, c^{\mu}$ cannot be independent $\rightarrow a^{\mu} b^{\nu} c^{\rho} \epsilon_{\mu \nu \rho}=0$.
3. $d=3$ dimensions:
$a^{\mu}, b^{\mu}, c^{\mu}, d^{\mu}$ cannot be independent $\rightarrow a^{\mu} b^{\nu} c^{\rho} d^{\sigma} \epsilon_{\mu \nu \rho \sigma}=0$.
4. And so on in $d=4, d=5, \ldots$

The idea is

- It has been observed that if we start from a basis where the equations are in triangular form, then getting to a canonical form is quite easy.
- Use the information coming from the Schouten identities in order to put the equations in triangular form! \rightarrow to decouple them!
- Finally "clean up" things in order to put them in canonical form.

Let us see how this can be used to decouple the equations in an explicit example, easy but non-trivial.

The two-loop sunrise graph with two massless and one massive propagator.

The idea is

- It has been observed that if we start from a basis where the equations are in triangular form, then getting to a canonical form is quite easy.
- Use the information coming from the Schouten identities in order to put the equations in triangular form! \rightarrow to decouple them!
- Finally "clean up" things in order to put them in canonical form.

Let us see how this can be used to decouple the equations in an explicit example, easy but non-trivial.

The two-loop sunrise graph with two massless and one massive propagator.

$$
=\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(I \cdot p)^{\alpha_{5}}}{\left(k^{2}\right)^{\alpha_{1}}\left(I^{2}\right)^{\alpha_{2}}\left((k-I+p)^{2}-m^{2}\right)^{\alpha_{3}}}
$$

1. Using IBPs we can reduce all these integrals to only 2 Master Integrals. Say we randomly make a "reasonable choice"

$$
I_{1}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,1,0,0\right), \quad I_{2}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,2,0,0\right) .
$$

2. Derive now $D E$ for these two integrals, we find:

$$
\begin{aligned}
& \frac{d}{d p^{2}} I_{1}=\frac{(d-3)}{p^{2}} I_{1}-\frac{m^{2}}{p^{2}} I_{2} \\
& \frac{d}{d p^{2}} I_{2}=\frac{(d-3)(3 d-8)}{2 p^{2}\left(p^{2}-m^{2}\right)} I_{1}+\left(\frac{2(d-3)}{p^{2}-m^{2}}-\frac{(3 d-8)}{2 p^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathcal{I}\left(p^{2}, m^{2} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& =\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(I \cdot p)^{\alpha_{5}}}{\left(k^{2}\right)^{\alpha_{1}}\left(I^{2}\right)^{\alpha_{2}}\left((k-I+p)^{2}-m^{2}\right)^{\alpha_{3}}}
\end{aligned}
$$

1. Using IBPs we can reduce all these integrals to only 2 Master Integrals. Say we randomly make a "reasonable choice"

$$
I_{1}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,1,0,0\right), \quad I_{2}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,2,0,0\right)
$$

2. Derive now $D E$ for these two integrals, we find:

$$
\begin{aligned}
& =\mathcal{I}\left(p^{2}, m^{2} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& =\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(I \cdot p)^{\alpha_{5}}}{\left(k^{2}\right)^{\alpha_{1}}\left(I^{2}\right)^{\alpha_{2}}\left((k-I+p)^{2}-m^{2}\right)^{\alpha_{3}}}
\end{aligned}
$$

1. Using IBPs we can reduce all these integrals to only 2 Master Integrals. Say we randomly make a "reasonable choice"

$$
I_{1}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,1,0,0\right), \quad I_{2}=\mathcal{I}\left(p^{2}, m^{2} ; 1,1,2,0,0\right)
$$

2. Derive now DE for these two integrals, we find:

$$
\begin{aligned}
\frac{d}{d p^{2}} I_{1} & =\frac{(d-3)}{p^{2}} I_{1}-\frac{m^{2}}{p^{2}} I_{2} \\
\frac{d}{d p^{2}} I_{2} & =\frac{(d-3)(3 d-8)}{2 p^{2}\left(p^{2}-m^{2}\right)} I_{1}+\left(\frac{2(d-3)}{p^{2}-m^{2}}-\frac{(3 d-8)}{2 p^{2}}\right) I_{2}
\end{aligned}
$$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. $\operatorname{In} d=2 \rightarrow \epsilon(k, I, p)=k^{\mu} l^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$

$$
\epsilon^{2}(k, \mid, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-I^{2}(k \cdot p)^{2}-p^{2}(k \cdot I)^{2}+2(k \cdot I)(I \cdot p)(k \cdot p)
$$

5. Does not depend on d anymore! Build a d-dimensional polynomial
$p(d ; k, 1, p)=k^{2} 1^{2} p^{2}-k^{2}(1 \cdot p)^{2}-1^{2}(k \cdot p)^{2}-p^{2}(k \cdot 1)^{2}+2(k \cdot 1)(1 \cdot p)(k \cdot p)$
where now

$$
P(1 ; k, I, p)=P(2 ; k, I, p)=0
$$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. In $d=2 \rightarrow \epsilon(k, l, p)=k^{\mu} l^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$
5. Does not depend on d anymore! Build a d-dimensional polynomial $P(d ; k, l, p)=k^{2} r^{2} p^{2}-k^{2}(l \cdot p)^{2}-l^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot l)(l \cdot p)(k \cdot p)$
where now

$$
P(1 ; k, I, p)=P(2 ; k, I, p)=0 .
$$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. $\operatorname{In} d=2 \rightarrow \epsilon(k, I, p)=k^{\mu} I^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$
5. Does not depend on d anymore! Build a d-dimensional polynomial $P(d ; k, l, p)=k^{2} r^{2} p^{2}-k^{2}(l \cdot p)^{2}-l^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot l)(l \cdot p)(k \cdot p)$

$$
P(1 ; k, l, p)=P(2 ; k, l, p)=0 .
$$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. $\operatorname{In} d=2 \rightarrow \epsilon(k, I, p)=k^{\mu} I^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$

$$
\epsilon^{2}(k, I, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-I^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot I)(I \cdot p)(k \cdot p)
$$

5. Does not depend on d anymore! Build a d-dimensional polynomial $P(d ; k, l, p)=k^{2} l^{2} p^{2}-k^{2}(l \cdot p)^{2}-l^{2}(k \cdot p)^{2}-p^{2}(k \cdot 1)^{2}+2(k \cdot l)(l \cdot p)(k \cdot p)$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. $\operatorname{In} d=2 \rightarrow \epsilon(k, I, p)=k^{\mu} I^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$

$$
\epsilon^{2}(k, I, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-l^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot l)(I \cdot p)(k \cdot p)
$$

5. Does not depend on d anymore! Build a d-dimensional polynomial

$$
P(d ; k, I, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-I^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot I)(I \cdot p)(k \cdot p)
$$

where now

$$
P(1 ; k, l, p)=P(2 ; k, l, p)=0 .
$$

How can we make these equations look better when expanded in $d \rightarrow 2 n$?

1. Schouten Identities say that in $d=2$ dimensions there can be only 2 vectors that are linearly independent.
2. The two-loop sunrise depends on 3 vectors $\rightarrow k, l, p$!
3. $\operatorname{In} d=2 \rightarrow \epsilon(k, I, p)=k^{\mu} I^{\nu} p^{\rho} \epsilon_{\mu \nu \rho}=0$.
4. Now square it and contract the epsilon tensors in $d=3$

$$
\epsilon^{2}(k, l, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-l^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot l)(I \cdot p)(k \cdot p)
$$

5. Does not depend on d anymore! Build a d-dimensional polynomial

$$
P(d ; k, I, p)=k^{2} I^{2} p^{2}-k^{2}(I \cdot p)^{2}-I^{2}(k \cdot p)^{2}-p^{2}(k \cdot l)^{2}+2(k \cdot I)(I \cdot p)(k \cdot p)
$$

where now

$$
P(1 ; k, l, p)=P(2 ; k, l, p)=0
$$

What do I do with this polynomial that is zero in $d=2$?

1. As $k, I \rightarrow \infty$, in the UV limit, $P(d ; k, l, p) \approx k^{2} I^{2}$
2. As $k, I \rightarrow 0$, in the IR soft limit, $P(d ; k, I, p) \approx k^{2} I^{2} \rightarrow 0$
3. As $k, l \| p$, with $p^{2}=0$, in the IR collinear limit $P(d ; k, l, p) \rightarrow 0$

We know UV and IR properties of these polynomials \rightarrow they can partly cure IR divergences!

We can use it to find relations between the first $\operatorname{order}(\mathrm{s})$ of the master integrals as $d \rightarrow 2$ (or $d \rightarrow 2 n$ in case)

What do I do with this polynomial that is zero in $d=2$?

1. As $k, I \rightarrow \infty$, in the UV limit, $P(d ; k, l, p) \approx k^{2} I^{2}$
2. As $k, I \rightarrow 0$, in the IR soft limit, $P(d ; k, I, p) \approx k^{2} I^{2} \rightarrow 0$
3. As $k, I \| p$, with $p^{2}=0$, in the IR collinear limit $P(d ; k, l, p) \rightarrow 0$.

We know UV and IR properties of these polynomials \rightarrow they can partly cure IR divergences!

We can use it to find relations between the first $\operatorname{order}(\mathrm{s})$ of the master integrals as $d \rightarrow 2$ (or $d \rightarrow 2 n$ in case)

What do I do with this polynomial that is zero in $d=2$?

1. As $k, I \rightarrow \infty$, in the UV limit, $P(d ; k, I, p) \approx k^{2} I^{2}$
2. As $k, I \rightarrow 0$, in the IR soft limit, $P(d ; k, I, p) \approx k^{2} I^{2} \rightarrow 0$
3. As $k, l \| p$, with $p^{2}=0$, in the $\mathbf{I R}$ collinear limit $P(d ; k, I, p) \rightarrow 0$.

We know UV and IR properties of these polynomials \rightarrow they can partly cure IR divergences!

We can use it to find relations between the first $\operatorname{order}(\mathbf{s})$ of the master integrals as $d \rightarrow 2$ (or $d \rightarrow 2 n$ in case)

Integrals in sunrise topology have at most a squared pole $1 /(d-2)^{2}$ as $d \rightarrow 2$.
Take for example these two new master integrals

$$
\begin{gathered}
Z_{1}=(d-1)(d-2) I_{1} \\
Z_{2}=\int \mathcal{D}^{d} k \mathcal{D}^{d} / \frac{P(d ; k, I, p)}{\left(k^{2}\right)\left(I^{2}\right)^{2}\left((k-I+p)^{2}-m^{2}\right)^{2}}
\end{gathered}
$$

Deriving new DE for these integrals we find:

$$
\begin{aligned}
& \frac{d}{d p^{2}} z_{1}=-\frac{z_{1}}{p^{2}-m^{2}}-2(d-2)\left(\frac{z_{1}}{p^{2}-m^{2}}-\frac{6}{p^{2}\left(p^{2}-m^{2}\right)} z_{2}\right) \\
& \frac{d}{d p^{2}} z_{2}=\frac{(d-2)}{2}\left(\frac{z_{1}}{4}-\frac{z_{2}}{p^{2}}\right)
\end{aligned}
$$

[^0]Integrals in sunrise topology have at most a squared pole $1 /(d-2)^{2}$ as $d \rightarrow 2$.
Take for example these two new master integrals

$$
\begin{gathered}
Z_{1}=(d-1)(d-2) I_{1} \\
Z_{2}=\int \mathcal{D}^{d} k \mathcal{D}^{d} / \frac{P(d ; k, I, p)}{\left(k^{2}\right)\left(I^{2}\right)^{2}\left((k-I+p)^{2}-m^{2}\right)^{2}}
\end{gathered}
$$

Deriving new $D E$ for these integrals we find:

1. The equations are completely decoupled as $d \rightarrow 2$!!
2. We have simply exploited information for fixed number of dimensions!

Integrals in sunrise topology have at most a squared pole $1 /(d-2)^{2}$ as $d \rightarrow 2$.
Take for example these two new master integrals

$$
\begin{gathered}
Z_{1}=(d-1)(d-2) I_{1} \\
Z_{2}=\int \mathcal{D}^{d} k \mathcal{D}^{d} / \frac{P(d ; k, I, p)}{\left(k^{2}\right)\left(I^{2}\right)^{2}\left((k-I+p)^{2}-m^{2}\right)^{2}}
\end{gathered}
$$

Deriving new DE for these integrals we find:

$$
\begin{aligned}
& \frac{d}{d p^{2}} Z_{1}=-\frac{Z_{1}}{p^{2}-m^{2}}-2(d-2)\left(\frac{Z_{1}}{p^{2}-m^{2}}-\frac{6}{p^{2}\left(p^{2}-m^{2}\right)} Z_{2}\right) \\
& \frac{d}{d p^{2}} Z_{2}=\frac{(d-2)}{2}\left(\frac{Z_{1}}{4}-\frac{Z_{2}}{p^{2}}\right)
\end{aligned}
$$

1. The equations are completely decoupled as $d \rightarrow 2$!!
2. We have simply exploited information for fixed number of dimensions!

What do I mean?
Let us have a closer look at Z_{2}. It can be written in terms of the two previous masters:

$$
Z_{2}=\frac{d-1}{12}\left\{\left[(d-2) p^{2}+(d-3) m^{2}\right] I_{1}+m^{2}\left(p^{2}-m^{2}\right) I_{2}\right\}
$$

- We can expand everything in $(d-2)$, knowing that I get at most $1 /(d-2)^{2}$.

- The first "non-zero" order is $1 /(d-2)^{2}$ which gives: $0=m^{2}\left(l_{1}^{(-2)}-\left(p^{2}-m^{2}\right) l_{2}^{(-2)}\right) \rightarrow$ First poles not independent!

What do I mean?

Let us have a closer look at Z_{2}. It can be written in terms of the two previous masters:

$$
Z_{2}=\frac{d-1}{12}\left\{\left[(d-2) p^{2}+(d-3) m^{2}\right] I_{1}+m^{2}\left(p^{2}-m^{2}\right) I_{2}\right\}
$$

- We can expand everything in $(d-2)$, knowing that I get at most $1 /(d-2)^{2}$.

$$
\begin{aligned}
& l_{j}=\frac{1}{(d-2)^{2}} l_{j}^{(-2)}+\frac{1}{(d-2)} l_{j}^{(-1)}+\ldots \\
& Z_{2}=\frac{1}{(d-2)} Z_{2}^{(-1)}+\ldots \quad \rightarrow \quad \text { at least one pole less! }
\end{aligned}
$$

- The first "non-zero" order is $1 /(d-2)^{2}$ which gives: $0=m^{2}\left(I_{1}^{(-2)}-\left(p^{2}-m^{2}\right) I_{2}^{(-2)}\right) \rightarrow$ First poles not independent!

What do I mean?

Let us have a closer look at Z_{2}. It can be written in terms of the two previous masters:

$$
Z_{2}=\frac{d-1}{12}\left\{\left[(d-2) p^{2}+(d-3) m^{2}\right] I_{1}+m^{2}\left(p^{2}-m^{2}\right) I_{2}\right\}
$$

- We can expand everything in $(d-2)$, knowing that I get at most $1 /(d-2)^{2}$.

$$
\begin{aligned}
& l_{j}=\frac{1}{(d-2)^{2}} l_{j}^{(-2)}+\frac{1}{(d-2)} l_{j}^{(-1)}+\ldots \\
& Z_{2}=\frac{1}{(d-2)} Z_{2}^{(-1)}+\ldots \quad \rightarrow \quad \text { at least one pole less! }
\end{aligned}
$$

- The first "non-zero" order is $1 /(d-2)^{2}$ which gives:

$$
0=m^{2}\left(l_{1}^{(-2)}-\left(p^{2}-m^{2}\right) l_{2}^{(-2)}\right) \quad \rightarrow \quad \text { First poles not independent! }
$$

This means that one of the two integrals can be written, at first order, in terms of the other one!

- Rescaling everything by $(d-2)^{2}$ this means:

$$
I_{2}=A\left(p^{2}, m^{2}\right) I_{1}+\mathcal{O}((d-2))
$$

- Now if the two differential equations are coupled
- The the recipe is
choose as new master $m_{2}=h_{2}-A\left(p^{2}, m^{2}\right) h_{1}=O((d-2))$
- Then you find:
$\frac{d}{d p^{2}} m_{2}=\mathcal{O}((d-2)) \quad \rightarrow \quad$ The equation decouples!

This means that one of the two integrals can be written, at first order, in terms of the other one!

- Rescaling everything by $(d-2)^{2}$ this means:

$$
I_{2}=A\left(p^{2}, m^{2}\right) I_{1}+\mathcal{O}((d-2))
$$

- Now if the two differential equations are coupled

$$
\begin{aligned}
\frac{d}{d p^{2}} l_{1} & =a_{11} l_{1}+a_{12} l_{2} \\
\frac{d}{d p^{2}} l_{2} & =a_{21} I_{1}+a_{22} l_{2}
\end{aligned}
$$

- The the recipe is
choose as new master $m_{2}=1_{2}-A\left(p^{2}, m^{2}\right) h_{1}=O((d-2))$
- Then you find:

This means that one of the two integrals can be written, at first order, in terms of the other one!

- Rescaling everything by $(d-2)^{2}$ this means:

$$
I_{2}=A\left(p^{2}, m^{2}\right) I_{1}+\mathcal{O}((d-2))
$$

- Now if the two differential equations are coupled

$$
\begin{aligned}
\frac{d}{d p^{2}} l_{1} & =a_{11} l_{1}+a_{12} l_{2} \\
\frac{d}{d p^{2}} l_{2} & =a_{21} l_{1}+a_{22} l_{2}
\end{aligned}
$$

- The the recipe is

$$
\text { choose as new master } m_{2}=I_{2}-A\left(p^{2}, m^{2}\right) I_{1}=\mathcal{O}((d-2))
$$

- Then you find:

This means that one of the two integrals can be written, at first order, in terms of the other one!

- Rescaling everything by $(d-2)^{2}$ this means:

$$
I_{2}=A\left(p^{2}, m^{2}\right) I_{1}+\mathcal{O}((d-2))
$$

- Now if the two differential equations are coupled

$$
\begin{aligned}
\frac{d}{d p^{2}} l_{1} & =a_{11} l_{1}+a_{12} l_{2} \\
\frac{d}{d p^{2}} l_{2} & =a_{21} l_{1}+a_{22} l_{2}
\end{aligned}
$$

- The the recipe is

$$
\text { choose as new master } m_{2}=I_{2}-A\left(p^{2}, m^{2}\right) I_{1}=\mathcal{O}((d-2))
$$

- Then you find:

$$
\frac{d}{d p^{2}} m_{2}=\mathcal{O}((d-2)) \quad \rightarrow \quad \text { The equation decouples! }
$$

This is all true and for $d \rightarrow 2 \ldots$ but we are interested in $d \rightarrow 4$!

One more property of dimensionally regularised Feynman Integrals

- Every Feynman Integral in dimensions can be related to the same Feynman integral in $d \pm 2$ dimensions [Tarasov, Lee]
- Once we know a basis which is canonical in $d \approx 2$, we can shift it back and forth to $d \approx 4$ or any $d \approx 2 n$!

$$
\begin{gathered}
\text { If } M(d) \text { fulfils } \partial_{x} M(d)=(d-2) A(x) M(d) \\
\text { then of course } M(d-2) \text { and } M(d+2) \text { will fulfil } \\
\partial_{x} M(d-2)=(d-4) A(x) M(d-2), \quad \partial_{x} M(d+2)=d A(x) M(d+2)
\end{gathered}
$$

This is all true and for $d \rightarrow 2 \ldots$ but we are interested in $d \rightarrow 4$!
One more property of dimensionally regularised Feynman Integrals

- Every Feynman Integral in d dimensions can be related to the same Feynman integral in $d \pm 2$ dimensions [Tarasov, Lee]
- Once we know a basis which is canonical in $d \approx 2$, we can shift it back and forth to $d \approx 4$ or any $d \approx 2 n$!

$$
\text { If } M(d) \text { fulfils } \partial_{x} M(d)=(d-2) A(x) M(d)
$$

then of course $M(d-2)$ and $M(d+2)$ will fulfil
$\partial_{x} M(d-2)=(d-4) A(x) M(d-2), \quad \partial_{x} M(d+2)=d A(x) M(d+2)$

This is all true and for $d \rightarrow 2 \ldots$ but we are interested in $d \rightarrow 4$!
One more property of dimensionally regularised Feynman Integrals

- Every Feynman Integral in d dimensions can be related to the same Feynman integral in $d \pm 2$ dimensions [Tarasov, Lee]
\Downarrow
- Once we know a basis which is canonical in $d \approx 2$, we can shift it back and forth to $d \approx 4$ or any $d \approx 2 n$!

If $M(d)$ fulfils $\partial_{x} M(d)=(d-2) A(x) M(d)$
then of course $M(d-2)$ and $M(d+2)$ will fulfil
$\partial_{x} M(d-2)=(d-4) A(x) M(d-2)$,
$\partial_{x} M(d+2)=d A(x) M(d+2)$

This is all true and for $d \rightarrow 2 \ldots$ but we are interested in $d \rightarrow 4$!
One more property of dimensionally regularised Feynman Integrals

- Every Feynman Integral in d dimensions can be related to the same Feynman integral in $d \pm 2$ dimensions [Tarasov, Lee]
\Downarrow
- Once we know a basis which is canonical in $d \approx 2$, we can shift it back and forth to $d \approx 4$ or any $d \approx 2 n$!

[^1]This is all true and for $d \rightarrow 2 \ldots$ but we are interested in $d \rightarrow 4$!
One more property of dimensionally regularised Feynman Integrals

- Every Feynman Integral in d dimensions can be related to the same Feynman integral in $d \pm 2$ dimensions [Tarasov, Lee]
- Once we know a basis which is canonical in $d \approx 2$, we can shift it back and forth to $d \approx 4$ or any $d \approx 2 n$!

If $M(d)$ fulfils $\partial_{x} M(d)=(d-2) A(x) M(d)$
then of course $M(d-2)$ and $M(d+2)$ will fulfil

$$
\partial_{x} M(d-2)=(d-4) A(x) M(d-2), \quad \partial_{x} M(d+2)=d A(x) M(d+2)
$$

Can we expect that such procedure will always work?

```
We know at least one example where this does not work: The massive two-loop sunrise
```


$$
\begin{aligned}
& =\mathcal{I}\left(p^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& =\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(l \cdot p)^{\alpha_{5}}}{\left(k^{2}-m_{1}^{2}\right)^{\alpha_{1}}\left(l^{2}-m_{2}^{2}\right)^{\alpha_{2}}\left((k-l+p)^{2}-m_{3}^{2}\right)^{\alpha_{3}}}
\end{aligned}
$$

1. One finds 4 Mis , which respect coupled differential equations in $d \approx 2$
2. Using Schouten identities one can prove that 2 MIs are not independent in $d=2$
3. The Schoutens give automatically two new MIs whose differential equations decouple from the other two! \rightarrow The other two stay coupled!!!!
4. No canonical basis (in the "canonical sense"!) \rightarrow Elliptic integrals ?????

Can we expect that such procedure will always work?
We know at least one example where this does not work: The massive two-loop sunrise

$$
\begin{aligned}
& =\mathcal{I}\left(p^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& =\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(I \cdot p)^{\alpha_{5}}}{\left(k^{2}-m_{1}^{2}\right)^{\alpha_{1}}\left(I^{2}-m_{2}^{2}\right)^{\alpha_{2}}\left((k-I+p)^{2}-m_{3}^{2}\right)^{\alpha_{3}}}
\end{aligned}
$$

1. One finds 4 Mis , which respect coupled differential equations in $d \approx 2$
2. Using Schouten identities one can prove that 2 MIs are not independent in $d=2$
3. The Schoutens give automatically two new MIs whose differential equations decouple from the other two! \rightarrow The other two stay coupled!!!!
4. No canonical basis (in the "canonical sense"!) \rightarrow Elliptic integrals ?????

Can we expect that such procedure will always work?
We know at least one example where this does not work: The massive two-loop sunrise

$$
\begin{aligned}
\sim & =\mathcal{I}\left(p^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \\
& =\int \mathcal{D}^{d} k \mathcal{D}^{d} I \frac{(k \cdot p)^{\alpha_{4}}(I \cdot p)^{\alpha_{5}}}{\left(k^{2}-m_{1}^{2}\right)^{\alpha_{1}}\left(l^{2}-m_{2}^{2}\right)^{\alpha_{2}}\left((k-I+p)^{2}-m_{3}^{2}\right)^{\alpha_{3}}}
\end{aligned}
$$

1. One finds 4 Mis, which respect coupled differential equations in $d \approx 2$
2. Using Schouten identities one can prove that $\mathbf{2}$ MIs are not independent in $d=2$
3. The Schoutens give automatically two new MIs whose differential equations decouple from the other two! \rightarrow The other two stay coupled!!!!
4. No canonical basis (in the "canonical sense"!) \rightarrow Elliptic integrals ?????

Conclusions

1. The differential equations method is one of the most effective methods for solving multi-loop and multi-scale Feynman Integrals.
2. Recently fast development with the introduction of the idea of a Canonical Basis by J.Henn.
3. Many hints on how to find it, but the problem of how to do it in general, and when this is possible, remains open.
4. I showed with an easy example how the Schouten Identities could be used in order to systematically find such basis.
5. When this is not possible \rightarrow Elliptic integrals (Elliptic polylogarithms??)
6. The differential equations method is one of the most effective methods for solving multi-loop and multi-scale Feynman Integrals.
7. Recently fast development with the introduction of the idea of a Canonical Basis by J.Henn.
8. Many hints on how to find it, but the problem of how to do it in general, and when this is possible, remains open.
9. I showed with an easy example how the Schouten Identities could be used in order to systematically find such basis.
10. When this is not possible \rightarrow Elliptic integrals (Elliptic polylogarithms??)

Work in progress...

Thanks!

[^0]: 1. The equations are completely decoupled as $d \rightarrow 2$!!
 2. W/e have simply exploited information for fixed number of dimensions!
[^1]: If $M(d)$ fulfils $\partial_{x} M(d)=(d-2) A(x) M(d)$
 then of course $M(d-2)$ and $M(d+2)$ will fulfil
 $\partial_{x} M(d-2)=(d-4) A(x) M(d-2), \quad \partial_{x} M(d+2)=d A(x) M(d+2)$

