Borexino status report

A. Ianni for the Borexino Collaboration XLII LNGS Scientific Committee April 13th, 2014

Publications since last SC

 Final results of Borexino Phase-I on low energy solar neutrino spectroscopy
 – Phys. Rev. D 89, 112007 (2014)

• Neutrinos from the primary proton-proton fusion process in the Sun

- Nature 512, 383 (2014)

Outline

- pp neutrino measurement
 - Jan 2012 May 2013 408 days of data Phase II
 - Data after WE purification campaign in 2010 2011
- next on solar neutrinos
 - Phase II data about 860 days
- SOX status report

Borexino experiment overview

Rome, Nov 4th, 2014

Paolo Lombardi - I.N.F.N. Sez. di Milano

Solar Neutrinos

Why a pp solar neutrinos real time measurement?

• Probe the slowest process which sets the evolution of the Sun in 10⁹ years time scale

– 99% of energy in the Sun from

$$p + p \rightarrow d + e^+ + v_e + 0.42 MeV$$

• Probe solar luminosity vs neutrino luminosity

• Probe solar variability over 10⁵ years time scale

Spectral measurement of pp neutrinos

Challenges

- Rate of ¹⁴C
 - Dominant rate component in Borexino, mainly at low energy

- Pile-up of ¹⁴C
 - Expected to give a significant contribution at low energy

¹⁴C rate

¹⁴C activity estimation

From 2nd cluster events > 8ms to avoid afterpulses from PMTs 40 ± 1 Bq

 $^{14}C/^{12}C = (2.7\pm0.1) \times 10^{-18}$

Beta spectrum with shape factor: 1+1.24(Q_b-T)

¹⁴C pile-up

- Rate ¹⁴C = 40 Bq
- Cluster window = 230 ns
- Expected pile-up rate ~ 100 cpd/100tons
- Expected pp rate ~ 130 cpd/100tons
- Syntethic pile-up: real triggered events overlapped with random data and processed with reconstruction code: 154 ± 10 cpd/100tons

The results of the standard spectral fit

Systematics estimation

Varying the fit conditions Perform fit and plot distribution of results for pp rate

pp rate result

- Rate-pp = 144 ± 13(stat) ± 10(sys) cpd/100tons
 Prediction = 131 ± 2 cpd/100tons
- Neutrino flux = $(6.6 \pm 0.7) \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}$ - Prediction = $(5.98 \pm 0.04) \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}$
- Null hypothesis excluded at 10s

Solar Neutrino fluxes: observations vs predictions

Source	Flux [cm ⁻² s ⁻¹] SSM-HZ	Flux [cm ⁻² s ⁻¹] SSM-LZ	Flux [cm ⁻² s ⁻¹] Data
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	6.02(1 ^{+0.002} _{-0.01})×10 ¹⁰ 6.6(1±0.11)×10 ¹⁰ [BX]
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.63(1±0.21)×10 ⁸ [BX]
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.99(1±0.05)×10 ⁹ [BX]
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.33(1±0.026)×10 ⁶
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	
CNO	5.24×10 ⁸	3.76×10 ⁸	<6.8×10 ⁸ (2s) < 7.7×10⁸ (2s) [BX] ¹⁵

Neutrino Survival Probability Only Borexino

Next on Solar Neutrino Search

- Phase II: about 860 livedays since Dec 11th 2011
- Unprecedented low background on ⁸⁵Kr and ²¹⁰Bi
 - See last SC meeting
- Calibration campaing under planning
 Schedule will be fixed at general meeting in Dec 2014
- Main goal: improve sensitivity to 7Be, 8B, pep and CNO neutrinos, neutrino effective magnetic moment
- **Purification campaign** (see next slide)
 - Schedule will be fixed at general meeting in Dec 2014

New Purification

- **Goal**: Reduce ²¹⁰Pb-²¹⁰Bi-²¹⁰Po decays by in-line re-purification of scintillator:
 - Reduce rate of 210 Bi from 20 cpd/100t to < 2 cpd/100t.
 - Comparable to CNO rate: 3 5 cpd/100t
- Method:
 - Water extraction with upgraded water radio-purity.
 - LNGS de-ionized water was found to have ²¹⁰Po and ²¹⁰Pb
 - Recent research shows that micro-organisms in ground water convert poloniun to volatile compound, dimethyl polonium with B.P. of 138 C.
 - Water extraction plant at LNGS supplemented with distillation column to remove dimethyl polonium
 - Tests done in Princeton had good results

Phase – II spectrum: preliminary

M4 Charge without averaging histogram for 7Be candidates

SOX: <u>Short Distance Neutrino</u> <u>Oscillations with BoreXino</u>

- Main focus on ¹⁴⁴Ce source
- The Cerium Anti Neutrino Generator (CeANG) will be manufactured in Russia and will be property of CEA-Saclay
- INFN will be responsible for the proper care of the CeANG at LNGS and for legal steps required to use the CeANG underground
- The CEA-Saclay will take care of transportation to and from LNGS; to assume responsability of the CeANG after use at LNGS
- Approval time for authorization ~ 1 year

Production of ¹⁴⁴Ce source

- Start with 2.8 t of spent fuel from Kola Nuclear Power Plant to Mayak around end of 2014
- Extraction of Ce isotopes ~ 8 kg
- Production of CeO₂ and insertion in shielding
 - 19cm of tungsten (2.3 t) mainly for 2.185 MeV gamma-rays
 - Source activity ~ 100kCi
- Source ready for transportation in Fall 2015

Source capsule and tungsten shield

Rome, Nov 4th, 2014

Transportation of Ce source

• From Mayak to San Petersburg by train

• To France by boat

• To Saclay and to Gran Sasso by truck

• Supervised by Areva TN

Transportation container: TN-MTR

Custom AREVA spreader

Rome, Nov 4th, 2014

Paolo Lombardi - I.N.F.N. Sez. di Milano

190mm Pb shielding

Source logistic inside SOX pit @ LNGS

INFN

Summary of Ce source test

- The CeANG test is fully defined in term of design, schedule and funding (by two ERC grants: 3.219 + 1.550 M€)
- Documentation for the authorization is ready and being sent by the LNGS Director soon to keep one year time scale
- CeANG expected in Nov 2015 at LNGS
- Dec 2015 calorimeter measurement in CR1
- 18 months of data taking

⁵¹Cr source test

- Crucial decision still to be made about where to perform the irradiation (goal ~ 10 MCi)
 - Mayak atomic complex in Russia
 - Oak Ridge USA (1st priority)
- VT and Kurchatov groups strongly engaged
- Enriched Cr used in Gallex stored in Italy at Nucleco
- Needed more funding expected from INFN and USA (~ 3.5M€)

Summary

- Activities 2015
 - Analysis of Phase II data
 - Goal: improve sensitivity on 7Be, 8B, CNO and pep solar neutrinos
 - Calibration campaign
 - Schedule to be agreed in Dec 2014
 - Install and test new purification plant to reduce ²¹⁰Bi, purification campaign
 - Schedule to be agreed in Dec 2014
- CeANG

Source production and transportation

Spare

Background in Phase-II

 after 6 cycles of purification with water extraction performed between May 2010 and August 2011:

1)⁸⁵Kr: strongly reduced: consistent with zero cpd/100 ton from the spectral fit; 2)²¹⁰Bi : reduced from ~70 cpd/100 tons to ~20 cpd/100 ton; 3)²³⁸U (from ²¹⁴Bi - ²¹⁴Po tagging) < 1.2 10⁻¹⁹ g/g at 95% C.L. 4)²³²Th: < 1.2 10⁻¹⁸ g/g at 95% C.L. (2 events in ~600 days) 5)²¹⁰Po decaying, currently about 120 cpd/100 ton 6)Radon: (5.8 \pm 1.2) 10⁻² cpd/100 ton

SOX: sensitivity to sterile neutrino

Borexino Water Extraction Systems

Current & Proposed Upgrade with 2 Fractional Distillation Columns

