Data analysis results from LED and 40K

Timing measurement in the detector

FEM

Timing measurement in the detector

Previous results summary

N 두 N

Genova

11/27/14

4

Timing results

	Floor number (N)	Measured propagation time with floor 1 (floor N-1)	Theoretical time with floor 1 (floor N-1)	Differential time with floor 1 (floor N-1)		
	1	0 +/- 0.5	0	0		
	2	174 (174) +/- 0.9	186 (186)	12 (12)	Details in	
	3	354 (179) +/- 0.5	371 (185)	17 (5)	Roma collaboration	
	4	550 (195) +/- 0.4	558 (187)	8 (-9)		
	5	740 (189) +/- 0.3	744 (186)	4 (-4)	meeting	
	6	929 (188) +/- 0.5	931 (187)	2 (-2)		
	7	1113 (182) +/- 0.72	1118 (187)	5 (-6)		
	8	1302 (175) +/- 0.75	1305 (187)	6 (1)		
		As a cross cheo used for first flo	ck a lower intens ors. It correspon	ity run was d to 2.5 ns <=> 2	0 cm	

INFN

di Fisica Nucleare Genova

11/27/14

Summary of the LED run infos

Run <u>nb</u>	date	Lower floor signal	Higher floor signal	Has been analyzed				
0684	2013-05-30	1	8	Х				
0687	2013-05-30	1	4					
1359	2013-09-24	4	8		 3 different dates has been analyzed yet (6 month separated) 9 runs while the same day was analyzed 			
1364	2013-09-25	3	8					
1439	2013-10-07	1	8					
1440	2013-10-07	1-4	8					
1442	2013-10-07	1-4	8					
[]		1	8	Х				
1451	2013-10-07	1	8	Х	Allow to know the time			
1454	2013-10-08	1	7		evolution of the bars on			
1455	2013-10-08	3	8		different time range			
1456	2013-10-08	3	8					
1458	2013-10-08	4	8					
2701	2014-04-22	1	8	Х				
2703	2014-04-23	1	8					

Christophe Hugon

Some example of the evolution

N F N

Genova

Christophe Hugon

11/27/14

7

Some example of the evolution

Continuous variations Seems coherent

While the day the OMs position can change by few meters

KM3NeT

11/27/14

Christophe Hugon

Perspectives

Can be interesting to cross-check with positioning, compass etc...

The results seems to be promising for the KM3NeT LED time calibration

Christophe Hugon

(parenthesis): Further studies of the LED run characteristics

Problem:

On the experimental tower of KM3NeT-it, a single run can contain different LED test.

We need to filtrate it to do a proper analysis for

- absorption length (intensity)

- scattering length (wavelength, different for each floor)

The propagation in function of distance can be more understood for isolated LED tests.

Instead of taking the integrated charge, a calibrated number of pe should give a better results (work in progress)

KM3NeT

N. Briukhanova

ienova

Scattering process

$$b_{P} = \frac{1.34 v_{S} \left(\frac{550 nn}{\lambda}\right)^{1.7}}{\lambda} + \frac{0.312 v_{l} \left(\frac{550 nm}{\lambda}\right)^{0.3}}{\lambda}$$

Clancy W. James Km3 internal note

- 2 components to the scattering :
 - On molecule (isotropic angular distribution)
 - On particles (Forward going angular distribution)
- The both processes depend on the wavelength on a different exponent.
- They imply a delay in time arriving
 - In function of distance
 - In function of wavelength

Need to know the timing to deduce the water properties. The fit method can help to extract the timing delay to the ns.

Water properties status

N F N

Genova

- Concentric detection sphere
 - Separated by the real floor to floor distance
- The source is in the center
- Send photons
- All the photons are kept at each level. Data kept
 - Emission direction (in fact always (0,0,1)
 - Time arrival at each sphere
 - Angle arrival
 - Incident angle
- Then the AA and LED emission are used to put a weigh to the arrival

KM3NeT

SPE measurement High LED intensity

SPE measurement low LED intensity

Nb of photo-electron per floor (BG)

Raw result on the floor 8

Timing and amplitude are used for the simulation adjustment on the data (green, chi2 minimization)

With the exact antares scattering and LED specifications.

=> Research of the minimum chi2 in function of scattering and LED angular emission

KM3NeT

INFN Stituto Nazionale di Fisica Nucleare Genova

Current very preliminary results ongoing work

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.9 X ANTARES scattering

Current very preliminary results ongoing work

Genova

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.9 X ANTARES scattering

Current very preliminary results ongoing work

Genova

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.9 X ANTARES scattering

The total chi2 is calculated as

Sqrt (chi2(floor8)² + chi2(floor7)² + chi2(floor6)²)

The chi2 is calculated comparing data and simulation the weighted with the number of events

KM3NeT

Current very preliminary results ongoing work

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.9 X ANTARES scattering

Genova

Christophe Hugon

Current very preliminary results ongoing work

Water scattering of ANTARES Events with charge < 1.3 spe LED specifications from constructor LED emission angle (refraction)

Under simulation: Table of chi2 for scattering values The preliminary best is around 0.8-0.9 x ANTARES one

KM3NeT

Christophe Hugon

Current very preliminary results ongoing work

Data and simulation timing floor 7 Water scattering of ANTARES otal charge (Cb) Data floor 7 (OM 1) Events with charge < 1.3 spe Simulation floor7 LED specifications from constructor LED emission angle (refraction) 1 spe selection effect: the "very delayed" events have Under simulation: 10 Table of chi2 for scattering values a bigger probability to be single and out of the first The preliminary best is around sample. Need low intensity 0.8-0.9 x ANTARES one 10 LED runs -350 -400 Data and simulation timing floor 8 Data and simulation timing floor 6 otal charge (Cb) otal charge (Cb) Data floor 8 (OM 1 + 2) Data floor 6 (OM 1 + 2) Simulation floor 8 Simulation floor 8 10⁻¹ 10⁻¹⁰ 10⁻¹ -100 -500 -400 -350 -200 -300 -250 -200 -150 -50 0 -450 -300 -250 ns

N 두 N

Genova

Christophe Hugon

11/27/14

21

⁴⁰K single rate in NEMO: The data

Single rate from random samples:

The baseline is extracted from samples of 1 hour (without selection) per month.

The samples showed a very good stability. Excluding the burst, almost no variation, It seems that there is a very low bioluminescence constant background.

KM3NeT

Christophe Hugon

⁴⁰K single rate in NEMO and ANTARES

Christop

11/27/14

Christophe Hugon

Parameters

di Fisica Nucleare Genova

Christophe Hugon

Simulation and data confrontation

Detector	set	2009	2010	2011	2012
	coincidence rate	$15.8~\mathrm{Hz}$	$15.5~\mathrm{Hz}$	$14.82~\mathrm{Hz}$	Х
	simulation	$43 \pm 3 \text{ kHz}$	$42\pm3~\mathrm{kHz}$	$41 \pm 3 \text{ kHz}$	Х
ANIARES	data	$51 \mathrm{~kHz}$	$49 \mathrm{~kHz}$	$46 \mathrm{~kHz}$	$47 \mathrm{~kHz}$
	diff	8 kHz (2.7 σ)	7 kHz (2.3 σ)	5 kHz (1.7 σ)	Х
	coincidence rate	Х	21.6	Hz	Х
VM2NaT :4	simulation	Х	$54\pm3~\mathrm{kHz}$		Х
KM5Ne1-It	data	Х	$52 \mathrm{~kHz}$		Х
	diff	Х	-2 kHz	(0.7σ)	Х

The ⁴⁰K coincidence rate is used to calibrate the simulation, We observe a regular decrease of the efficiency. We consider 3 kHz of noise for ANTARES and 3.6 kHz for NEMO (glass ⁴⁰K and

dark current)

The ANTARES rate is in agreement with the numerical calculus (J. Brunner) An underestimation of the ANTARES rates is observed. A very good agreement is found for NEMO

ienova

11/27/14

Where to find the soft and results

• All the results and the software analysis are available on

http://www.ge.infn.it/~chugon/NReader/documentation/ht ml/Results.html

Istituto Nazionale di Fisica Nucleare **Genova**

11/27/14

Christophe Hugon

27

Laser setup

Laser Beacon installed at the base of the NEMO-PhaseII tower

- $\lambda = 532 \text{ nm}$ $\lambda_{\text{att}}(\lambda = 532) \sim 25 \text{ m} !!$
- no photo-detector close to the laser diode (yes in future)
- light propagation along the vertical not optimal for construction
- calibrated the optical attenuator
- measured differences Δt_{1-n} : O.K. up to 300m distance

Laser range with the designed glass rod

Some results

NOTHING from the 6th floor

Laser orientation ?

Christophe Hugon

What the pulses look like ?

Why the second floor is used for the "start" signal instead of the first ?

OM 11 ADC is saturated:Lower rate, bad timing.The laser does not hit well the first floor ?

- OM 21 few ADC saturated: Usable rate and time

- OM61 is the latest floor, can be used to see a "normal" behavior, it is dominated by single photo-electron (almost no laser pulse reach it).

Previous conclusion

- The LED can be used for time calibration, even at high light intensity (first floors)
- The fitting method:

Christophe Hugon

11/27/14

- Improved the resolution to the ns
- I need the positioning to go further.
- The scattering can be studied, needs the simulation (see tomorrow slides)
 Checked up to 320 m distance

Test for a wider time range of runs

- Check evolution of the time calibration
 - While the day
 - While the year
- A lot of LED runs were done, but
 - In many runs different LED intensity were used
 - In many runs different LED were used
- Not all of them are yet usable, need more investigation if we want do go further

Summary of the LED run infos

Run nb	o date	Lower floor signal	Higher floor signal	Has been analyzed				
0684	2013-05-30	1	8	X				
0687	2013-05-30	1	4					
1359	2013-09-24	4	8		 3 different dates has been analyzed yet (6 month separated) 			
1364	2013-09-25	3	8					
1439	2013-10-07	1	8					
1440	2013-10-07	1-4	8		 9 runs while the same day 			
1442	2013-10-07	1-4	8		was analyzed			
[]		1	8	X				
1451	2013-10-07	1	8	X				
1454	2013-10-08	1	7		Allow to know the time			
1455	2013-10-08	3	8		evolution of the bars on			
1456	2013-10-08	3	8		different time range			
1458	2013-10-08	4	8					
2701	2014-04-22	1	8	X				
2703	2014-04-23		8					

NFN

di Fisica Nucleare Genova

11/27/14

Some example of the evolution

N 두 N

Genova

Some example of the evolution

11/27/14

Christophe Hugon

Perspectives

- Can be interesting to cross-check with positioning, compass etc...
- More run could be used, but it needs
 - More time
 - specific analysis to isolated the LED time

The results seems to be promising for the KM3NeT LED time calibrition

Laser setup

N 두 N

Laser Beacon installed at the base of the NEMO-Phasell tower

- $\lambda_{att}(\lambda=532) \sim 25 \text{ m !!}$ $\lambda = 532 \text{ nm}$
- no photo-detector close to the laser diode (yes in future)
- light propagation along the vertical not optimal for construction
- calibrated the optical attenuator
- measured differences Δt_{1-n} : O.K. up to 300m distance

Laser range with the designed glass rod

Some results

Time for PM 51 from raw minus OM 21 htimeraw fromF251 Entries 1603 45 347 Mean RMS 263.1 40 ∆t (f5 - f2) 35 30 25 20 15 200 400 600 800 ns

NOTHING from the 6th floor

Laser orientation ?

What the pulses look like ?

Why the second floor is used for the "start" signal instead of the first ?

OM 11 ADC is saturated:Lower rate, bad timing.The laser does not hit well the first floor ?

- OM 21 few ADC saturated: Usable rate and time

- OM61 is the latest floor, can be used to see a "normal" behavior, it is dominated by single photo-electron (almost no laser pulse reach it).

Conclusion

- The laser run present some difficulties
 - No good start time
 - Does not hit all of the PM
- New Laser design needs to include a precise start time (under developing by Roma group)
- Can be interesting to do a test with the PPM-DOM

Coriolis parenthesis

While I looked for the LED runs on the slow control OM rate, I saw this on every Oms

- Coriolis force ?
 - Calculated period ~20h
 - Measured period =24 h
- Activity based on the sun period ?
 - Bio activity ?
 - Deep Current ?
 - Yellow submarine ?
 - ...

Genova

If somebody want to explore it, there is some interesting things to do

- Cross check with the current components
- Check if there is a link with the PM positioning (plankton hits on the face/back)

KM3NeT

The Slow control will be soon integrated in Nreader (intership)

Title 1

Title 2

Christophe Hugon

Christophe Hugon