

Study of the d*E*/dx resolution of a GEM Readout Chamber prototype for the ALICE TPC

Andreas Mathis on behalf of the ALICE Collaboration

Technische Universität München

Excellence Cluster – Origin of the Universe

12.10.2015 – 4th Conference on Micro-Pattern Gaseous Detectors – Trieste

TPC – A VERSATILE TRACKING DETECTOR

TPC – an (almost) ideal tracking detector

- Large active volume and acceptance
- Low material budget
- 3D spatial information about hits
 → simple pattern recognition
- High particle densities
- Good momentum resolution
- Particle identification via measurement of the specific energy loss

Wide range of applications

- High energy physics
- Dark matter searches
- Neutrinoless double beta decay
- ... and many more

Limitations

- Huge parameter space for calibration
- Drift distortions due to backdrifting ions → gated operation
- Limited to low rate experiments

Gas volume

- ~ 90 m³ active detector medium
 - Ne-CO₂ (90-10) in RUN 1
 - Ar-CO₂ (90-10) in RUN 2
- E_d = 400 V/cm
- ~ 90 μs drift time for electrons

ALICE TPC

d*E/*dx in TPC (arb. units) ALICE performance pp, ls = 13 TeV10 p (GeV/c)

ALI-PERF-101240

Readout chambers

- MWPCs with pad readout
- High multiplicity environment (up to 20,000 particles)
 - $\sigma_{dE/dx} \approx 5.5$ % in pp
 - $\sigma_{dE/dx} \approx 7$ % in central Pb-Pb
 - Excellent PID capabilities!

LIMITATIONS OF THE PRESENT SYSTEM

- Current MWPCs employ gating grid (GG) to neutralize ions produced in amplification process
 - Otherwise sizeable distortions due to space charge
- GG limits operation to ~ 3.5kHz
 - Electron drift (~ 90 μs) + ion blocking with GG (~ 200 μs)
- Readout rate in Pb-Pb limited to 500 Hz

Upgrade necessary to run at a higher interaction rate!

ALICE TPC UPGRADE FOR RUN 3

Operate ALICE at high luminosity

- \mathcal{L} = 6 x 10²⁷ cm⁻² s⁻¹ for Pb-Pb
- Record all minimum bias events
 - 50 kHz Pb-Pb collisions (100× higher than present)
 - Average event spacing ~ 20 μ s \rightarrow ~ 5 events pile up in TPC
- No dedicated trigger \rightarrow continuous readout
- Implies significant detector upgrades

> No gating and continuous readout of the TPC with GEMs

Requirements for GEM readout

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1 % at gain = 2000 (ε=20)</p>
- Maintain energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC RUN 3 conditions
- + new electronics
- + novel calibration and online reconstruction schemes

GEM – GASEOUS ELECTRON MULTIPLIER

- 50 μm polyimide foil with 5 μm cooper
- GEM foils allow for continuous operation
 - Intrinsic IBF suppression (ion backflow)

$$IBF = \frac{I_{cathode}}{I_{anode}} = \frac{1+\epsilon}{G_{eff}}$$

- ε: number of backdrifting ions per incoming electron
- Operation of several GEMs in a stack
 - IBF of $\mathcal{O}(10^{-3})$ can be achieved
 - No gating grid required

Simulated avalanche in a GEM hole (Garfield / Magboltz simulation)

PERFORMANCE STUDIES

Talk by A. Deisting tomorrow about stability!

Baseline solution

- Result of intensive R&D phase
- S-LP-LP-S configuration
- ✓ IBF = 0.6 %
- $\sim \sigma_{\rm E}/{\rm E} < 12$ % for ⁵⁵Fe
- ✓ Stable operation
- ✓ Sufficient margin for fine-tuning of the voltages (e.g. for stability)

- Ions from 8000 events pile up in the drift volume at 50 kHz Pb-Pb
 - t_{drift, ion} = 160 ms
 - Distortions up to $dr \approx 20$ cm at $\epsilon=20$
- Corrections to $\mathcal{O}(10^{-3})$ are required for final calibration
 - Space-charge distortion map
 - Track interpolation from external detectors (ITS – TPC – TRD – TOF)
- Limits of calibration procedure tested up ε= 40
 - Does not compromise the physics program

Large size prototypes

Inner Readout Chamber – IROC

d*E*/dx resolution studies

DETECTOR – 4 GEM IROC

- Prototype of an Inner Read Out Chamber (IROC)
- Quadruple GEM stack
 - S-LP-LP-S configuration
 - Single-mask technology
 - Produced in CERN MPGD workshop

Mounted into field cage box

- Drift length: 11.5 cm
- Drift field: 400 V/cm
- Gas: Ne-CO₂-N₂ (90-10-5)

SETUP – PS EAST AREA T10

- Dedicated testbeam to study dE/dx performance of a 4 GEM IROC
 - 1 GeV/c secondary negative beam (e^{-} , π^{-})
 - Average beam rate: 2000 particles/spill
 - DAQ rate: ca. 300 events/spill
 - Detector equipped with 10 EUDET FECs (~1200 readout channels)

CLUSTERING

- Search for maxima in pad row time planes
- Investigation of 5×5 bins around the central bin with maximum amplitude
- Cluster size smaller than with MWPC read out
 - Narrower PRF of GEMs

- Iterative track finding
 - Assigning clusters to a track candidate
 - Kalman filter
- Clusters assigned per track
 - ✓ Matches IROC's 63 pad rows

пп

d*E*/d*x* RESOLUTION – ANALYSIS STRATEGY

- PID by Cherenkov counter
 Only one track events
- Truncated mean of the cluster charge Q_{tot}
 - Truncation: 0 70 %
- Corrections
 - Normalized gain map
 - Obtained with tracks from testbeam

Cherenkov spectrum

Baseline settings

- ✓ Optimal detector performance
- **√**σ_E/E ≈ 9.5 %
- Performance compatible with current MWPCs
- Results for different HVsettings well reproduced by microscopic simulations

Large size prototypes

Outer Readout Chamber – OROC First prototype

OROC PROTOTYPE

- Validate production methods with large size detector
 - Active GEM area = 0.6817 m²
 - ✓ GEM production & framing
 - ✓ Detector assembly
 - ✓ QA protocols
- ✓ Milestone for the project

- ALICE TPC will be upgraded for RUN 3 and beyond to operate at 50 kHz rate in Pb-Pb collisions
 - No gating and continuous readout with GEMs
- 4 GEM IROC prototype built and commissioned
 - Energy resolution studies carried out at the CERN PS
 - dE/dx performance compatible with requirements

✓ σ_E/E ≈ 9.5%

- \checkmark Relative energy resolution not compromised after the upgrade
- 4 GEM OROC prototype build and commissioned
 - Largest GEM-based detector up to date

✓ R&D phase finished

- ✓ IBF minimized while optimizing the energy resolution
- ✓ Stability against electrical discharges enhanced
 - \checkmark Discharge studies with α sources and hadrons
- Pre-production in Q3-4 / 2015
 - Exercise mass production
 - Close to final design
- Mass production starting in Q1 / 2016
 - 40 IROC and 40 OROC chambers to be built
- LHC long shutdown 2 in 2019-20
 - Replace current readout chambers and mount new electronics
 - Commissioning the TPC
 - Total number of GEM holes in ALICE TPC: 3.9 x 10⁹ for S-LP-LP-S

Backup

GATING GRID

- Gating grid is supplied with $V_{G} \pm \Delta V$
 - + separates drift region from amplification region
 - neutralizes the ions in the amplification region
- After 20 µs the ions are collected on the pad plane
- After 20-30 µs, the ions reach the cathode wires and are neutralized there
- After 100 or 130 µs respectively, the ions reach the two different gating grid wires

- ΔU_{GEM1} increases for a given setting from 225-315 V from left to right
- ΔU_{GEM3} and ΔU_{GEM4} are adjusted to an effective gain of 2000 with fixed ratio
- The transfer and induction fields are 4, 2, 0.1 and 4 kV/cm

SPACE CHARGE DISTORTIONS & CALIBRATION

- Ions from 8000 events pile up in the drift volume at 50 kHz Pb-Pb
 - t_{drift, ion} = 160 ms
 - Distortions up to $dr \approx 20$ cm at $\epsilon=20$
- Corrections to $\mathcal{O}(10^{-3})$ are required for final calibration
 - Average space-charge distortion map updated O(15 mins)
 - High resolution space-charge distortion map updated O(5 ms)
 - Track interpolation from external detectors (ITS TPC TRD TOF)
- Limits of calibration procedure tested up ε= 40
 - Slight decrease in p_t resolution at low momenta
 - Does not compromise the physics program

- Space-charge fluctuations at the level of 3%
- Fluctuations on top of the average distortions
 - Max ± 6mm residual distortion in r
 - Max ± 2.5mm residual distortion in rφ
 - Dominated by event and multiplicity fluctuations
- ➤Constraints on the update interval for the final calibration O(5 ms)

d*E*/d*x* RESOLUTION – EXTRAPOLATION TO FULL TPC

n_{samples}