Status of GEM Trackers for Super Bigbite Spectrometer at JLab

Kondo Gnanvo (UVa)

On behalf of the SBS Collaboration

University of Virginia (UVa)
N. Liyanage, V. Nelyubin, H. Nguyen,
X. Bai, D. Di, R. Wang

INFN Roma, Catania, Genoa
E. Cisbani, P. Musico

MPGD2015, Trieste-Italy, Oct. 2015
Outline

- GEM Trackers for Super Bigbite Spectrometer (SBS)
- Issues with large-area & light-weight GEM detectors
- APV25 readout electronics
The 12 GeV upgrade of CEBAF accelerator @ JLab

6 GeV CEBAF (< 2013)
Max Current: 200 \(\mu \)A
Max Energy: 0.8 - 5.7 GeV
Long. Polarization: 75-85%

12 GeV CEBAF
Max Current: 90 \(\mu \)A
Max Energy Hall A,B,C: 10.9 GeV
Max Energy Hall D: 12 GeV
Long. Polarization: 75-85%
Physics program in Hall A for the CEBAF 12 GeV era @ JLab

SBS physics program

- **GEP**: \(12 (\text{GeV/c})^2\)
- **GMN**: \(13.5 (\text{GeV/c})^2\)
- **GEN**: \(10 (\text{GeV/c})^2\)
- **SSA in nSIDIS**: 30,000 gain vs HERMES

- **A1n/d2n** – gain ~ 20-30 compared with HMS/SHMS
- **TDIS** meson DIS
- **WACS-ALL**, full proposal, 100x gain in productivity
- **GENRP**, ready for full proposal, 10+x gain in productivity
- \(\text{pol } H(\gamma, p), H(\gamma, \pi^0 p)\)
- **PVDIS** – gain 10-15 compared with two HRSs
- A1p/d2p – gain ~20-30
- \(D(e,e'd) - A, T20\)
- J/Psi as gluon probe of QCD – well matched to BB/SBS
- \(A(e,e'p), A(e,e'\pi^+)\)

Neutron form factors, E12-09-016 and E12-09-019

Proton form factors ratio, GEp(5) (E12-07-109)

SIDIS experiment (conditionally approved)

\[e^+ + \text{He}^\uparrow \rightarrow e^' + \pi(K)\pm + X \]

Physics program in Hall A for the CEBAF 12 GeV era @ JLab

10/13/2015

MPGD2015 Conference, Trieste Italy
Requirements for the Super Bigbite Spectrometer (SBS)

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Luminosity (s·cm²)⁻¹</th>
<th>Tracking Area (cm²)</th>
<th>Angular (mrad)</th>
<th>Vertex (mm)</th>
<th>Momentum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMn - GEn</td>
<td>up to $7 \cdot 10^{37}$</td>
<td>40x150 and 60x200</td>
<td>< 1</td>
<td><2</td>
<td>0.5%</td>
</tr>
<tr>
<td>GEp(5)</td>
<td>up to $8 \cdot 10^{38}$</td>
<td>40x150, 60x200 and 80x300</td>
<td><0.7</td>
<td>~1</td>
<td>0.5%</td>
</tr>
<tr>
<td>SIDIS</td>
<td>up to $2 \cdot 10^{37}$</td>
<td>40x150 and 60x200</td>
<td>~0.5</td>
<td>~1</td>
<td><1%</td>
</tr>
</tbody>
</table>

Most demanding

Proton arm of the SBS in the Gep(5) configuration

- High rate
- Large area
- Spatial resolution < 100 microns

- Large luminosity
- Large acceptance
- Forward angles
- Re-configurable detectors
- Polarized Proton Target

High photon background up to 250 MHz/cm² and electron background 160 KHz/cm²

10/13/2015 MPGD2015 Conference, Trieste Italy
SBS GEM Trackers

- **Front Tracker (FT): Track of the recoil protons**
 - 1st tracker: 6 GEM layers, active area of $150 \times 40 \text{ cm}^2$
 - Each layers: vertical stack of 3 GEM modules ($50 \times 40 \text{ cm}^2$)
 - Total production of 18 modules

- **Back Tracker (BT): Proton Polarimetry**
 - Polarization of the recoil protons
 - 2nd & 3rd Trackers: 10 layers, active area of $200 \times 60 \text{ cm}^2$
 - Each layer: vertical stack of 4 GEM modules ($60 \times 50 \text{ cm}^2$)
 - Total production of 40 ($+5$) modules
Assembly of the SBS Triple-GEM modules

Standard COMPASS triple-GEM

- Gain
- ~20
- ~20
- ~20
- ~8000

Assembly steps of the Front Tracker GEMs

- Module production fully established in INFN-Catania
- Electronics preliminary QA in Genoa
- Module integration and characterization in INFN-Sanità

Production rate: 2 modules in 3 months

- GEM Foils
 - HV curing and quality test
- Permagraph Frames
 - Visual Inspection
 - Ultrasound bath cleaning
- Stretching
- Gluing
- Clean room
 - Assembling gas lines
 - Put together (align on reference pins)
 - Glue Curing (~24 h)
 - Finalization (solder resistor, check HV)

Parts of the Back Trackers

Polarimeter GEM

- GEM foil with the visible contact of the HV sectors
- GEM foil in the Ns box for leakage current test
- GEM foil on the mechanical stretcher
- Support frame for GEM with 300 μm spacers inside the active area
- Frames on a custom holder for cleaning in Ultrasonic bath
- Two dimensional flexible readout board

Standard COMPASS 2D readout board

10/13/2015
SBS GEM modules

- Spatial resolution < 0.1 mm; high radiation tolerance
- Lightweight triple-GEM detectors (0.7% radiation length)
- Readout layer: 2D x/y strip ala COMPASS (0.4 mm pitch)
- APV25-based electronics with VME64x modules (total channels > 120K channels)

Production Status

Front Tracker GEMs

- 18 modules to be completed by mid 2017
- 8 modules already assembled with 4 tested
- One full layer integrated with APV25 cards @ JLab
- 4 layers expected by end 2016

Carbon fiber Holding frame
More compact and more rigid option
minimize thermal deformation
Production Status

Back Tracker GEMs

- 45 modules to be completed by mid 2017
- Production rate of 2 modules / month
- 19 modules successfully tested as of Oct. 2015

Holding frame:

- 4 modules: 2 modules sitting directly on the frame (bottom plane), other 2 modules on L-shape (top plane)
 - This minimizes dead area
 - And allow easy replacement of the modules and of the FE cards
- The holding frames are under production @ JLab
Performance in Test Beam

FT GEM modules high Intensity Proton beam in Julich COSY Test Beam (Oct. 2014)

• Study GEM response in high intensity proton beam (small spot ~ few cm²)
• Different dividers on different module
• Investigate HV and gas flow

• Efficiency slightly affected by the high beam intensity
• No noticeable effects from gas flow rate

2.8 GeV Proton Beam

4 x Large GEMs

Scintillator Pad-2

Black – low gain (m1)
Red – moderate gain (m2)
Green – normal gain (m3)
Blue – very low gain (m4)

Same HV, gas flow
1 - 16 V/h
Performance in Test Beam

BT GEM modules in Test Beam @ FNAL (Oct. 2013)

- Two SBS BT GEM prototypes tested at FTBF
- APV25-SRS electronic tested at trigger rate 400 Hz
- Data analysis for spatial resolution, gain efficiency, gain uniformity, timing of the APV25 signal ...
- FNAL test beam data reveals big issues (Gas flow, Quality of X/Y readout board etc)

Large GEM Test Beam Setup @ (FNAL) UVa & FIT

SRS + SRU Readout using DATE @ FTBF

- 64 APV’s read out by SRS
- Acquiring data from FECs with an SRU
- Current DAQ rate is ~150 Hz
- Using 6-9 25ns time slices for digitization
- Beam structure: 4s spills, 1min rep.time, 10 - 20 particles/spill
- Trigger: coincidence of 3 scintillators
Performances in test Beam

Hadron beam reconstruction

Charge sharing

Efficiency curve vs. HV

Gain uniformity

Spatial resolution

10/13/2015

MPGD2015 Conference, Trieste Italy
GEM Trackers for Super Bigbite Spectrometer SBS

Issues with large-area & light-weight GEM detectors

APV25 readout electronics
Deformation of the readout board

Analysis of the APV25 signal timing from the FNAL Test Beam data

- We looked at the spatial distribution of the APV25 signal peak w.r.t. the trigger delay (arbitrary reference)
- Strong spatial non-uniformity of the signal timing → Induced charge signal collected later by the readout strips in the center of the detector than at the edges.
- Difference as high as 4 time bins (100 ns) between center and edges
- Excellent timing correlation of the signal in x-strips and y-strips → the readout electronics not the source

Cause: Deformation of the readout board due to over pressure caused by the gas flowing inside the detector
Deformation of the readout board

Measurement of the deformation of the readout board

- Setup of a test (see cartoon on the left) to measure the bending of the readout board (honeycomb support) with the Ar/CO₂ flow rate inside the chamber
- Measurement were taken at 4 location on the bottom side of the honeycomb support
- The measured deflection of 100 units is equivalent to 2.54 mm
- A gas flow = 10 units represent about 2 volumes (V) change / hour in the GEM chamber (V = 3.6 L)
Deformation of the readout board

Measurement of the deformation of the readout board

Bending of the readout at flow = 5

Bending of the readout at flow = 10

Bending of the readout at flow = 15

Gas flow: 10 units = 2 volumes (V) change / hour; Measured deflection: 100 units = 2.54 mm

- APV25 signal peak time bin measured with Sr90 source at different flow rates.
- Amplitude of the non-uniformity depend on the gas flow (more precisely built-up pressure in the chamber)
- Clear correlation between the time bin of signal peak and the deformation of the readout board
Deformation of the readout board

Solution: Compensate the deformation of the readout board with a bottom gas volume

- Adding the bottom gas window significantly reduce considerably the spatial non uniformity of the signal speak time bin at high gas flow rate
- In addition, we also slightly change the gas flow design of the chamber to reduce the pressure built-up inside the chamber

![Graph showing spatial non-uniformity comparison with and without bottom gas window]
Entrance gas window foil collapse

Problem

- High particle rate over a large area of the detector \Rightarrow charging up of the Kapton foil \Rightarrow Strong electrostatic attraction between gas window & drift cathode
- Strong distortion of the APV25 signal (timing and shape)

Initial proposed solution

- A simple initial fix was to add some spacers in the gas window region of the chamber
- We saw a improvement but not sure about long term stability of the fix in high rate condition
Entrance gas window foil collapse

Final proposed solution

- Use aluminized gas window foil and set it to the same potential as the drift cathode → Faraday cage like to prevent charges accumulation on the gas window as well as the top layer of the drift
- Tested with SBS-BT-GEM with x-ray source at high rate > 1 MHz /cm² equivalent MIP.
 - Without the HV on the gas window ⇒ foil collapse after a few hours of x-ray exposure
 - With the HV on, we did not observe any collapse after 5 days of almost continuous exposure
Outline

- GEM Trackers for Super Bigbite Spectrometer SBS
- Issues with large-area & light-weight GEM detectors
- APV25 readout electronics
Readout electronics for SBS GEM Trackers

Main features:

- Use analog readout APV25 chips (> 100 k Channels)
- 2 actives components: APV25 Front end cards & VME64x module: Multi Purpose Digitizer (MPD)
- HDMI cables to transfer data between these two components
APV25 FE cards and Back planes

Different versions of the APV25 FE card produced

- v 4.10 with ZIF connectors for the FT Modules
- v 4.11 with Panasonic connectors for BT Modules

Different versions of the back planes

- 2 types for the Back Tracker GEMs: 5 and 12 slots
- 1 type for the Front Tracker GEM: long 5-slots

v 4.0
Front Tracker GEM

v 4.11
Back Tracker GEM (UVa)
Multi Purpose Digitizer (MPD) card

- VME64x board perform the digitization of analog signals from the FE cards and handle the slow control signals
- DDR2 (128 MB), 110 MHz system clock
- Compliant with JLab VME64x VITA 41 (VXS) standard
- 6 HDMI-A connectors for data and control signals
Long (23 m) HDMI cable effects on APV25 analog signal

- The large «binary» information (digital header) at the beginning of the analog signals of the APV introduce a large noise on the first (~20) channels of the frame
- Longer the cable larger the noise, higher the number of channel involved
- Belle (2012 JINST 7 C01082) proposed a 8-parameter FIR filter (12 m long cables) in firmware
- We added an off-line pedestal subtraction dependent on the digital header value (LUT suppression): very noisy channels largely recovered

Ideally must be a «delta»

Improved but not completely corrected
Summary

- The Hall A equipment for the 12 GeV Upgrade of the CEBAF at JLab is the Super Bigbite Spectrometer (SBS).
- The 3 tracking stations of the SBS are equipped with large area and light weight GEM detectors.
- The construction and commissioning of all 60 GEM chambers is ongoing at University of Virginia and at INFN Catania & Roma.
- The MPD system, an APV25-based readout electronics is developed at the University of Genoa to read out the GEM trackers.
- The MPD is compliant with the JLab VME64x VITA 41 (VXS) standard.