Irfu CCCC saclay

The COMPASS experiment gets its new hybrid pixelized Micromegas detectors for high particle flux

Damien Neyret

CEA Saclay IRFU/SPhN

MicroPattern Gaseous Detectors conference 2015

13/10/2015

New pixelized Micromegas detector project Pixelized read-out and discharge impact reduction Preliminary performance during 2015 run

The COMPASS experiment at CERN

Old COMPASS Micromegas detectors

I r f uCOMPASS MicromegasCOMPASS Micromegasdetectors

First Micromegas detectors installed in particle physics experiment (since 2001-2002)

Light board sandwich with 40x40 cm² active area

Good performance: 70-100 μm and 10 ns resolutions

Light gas mixture Ne + 10% C_2H_6 + 10% CF_4 to limit discharge rate

Blind center to reduce electronics occupation

Low-noise electronics using SFE16 chips (threshold ~ 4000 e-)

CEA DSM Irfu

saclay

13 October 2015

New pixelized Micromegas project

saclay

Motivations

MM

New COMPASS study phase in 2015-2018 with high flux muon (DVCS) and hadron beams (Drell-Yan)

Tracking at very small angle with same material budget

Discharge impact reduction at high beam flux

Main objectives of the project

Detectors active in beam area with pixel read-out

Less discharge \rightarrow stand 5 times higher flux

Integrated electronics (APV25 chips)

Robustness improved with bulk technology Same active area (40x40cm²) as present

Impact of low angle tracking on DVCS measurement

Pixels read-out in the detector center

CEA DSM Irfu 13 October 2015

The COMPASS experiment gets its new

APV front-end electronics for pixelized MM

lrfu

Design from TUM Munich

Used in other COMPASS detectors (RICH, pixelGEMs,...)

APV cards

APV25-S1 chips for amplification and analog multiplexing Very integrated, 128 channels/chip

Specific changes done for MM read-out (protection circuit)

ADC boards

Digitalize analog signals from APV chips

HGeSiCa VME cards

Data concentration and trigger distribution

7

Selected solutions to reduce the impact of discharges

Hybrid Micromegas with 1 GEM foil

Preamplification with a GEM foil (gain 10-20) Micromegas stage at lower gain \rightarrow fewer discharge

8

resistive pads

strips or pixels

resistors

R&D on spark impact reduction

Discharge rates with high flux hadron beam

CEA DSM Irfu

13 October 2015

Discharge rates with high flux hadron beam

lrfu

saclay

Mesh current on station 1 placed just after target + absorber

High current due to amplification of low momentum particles

No large discharge visible on new detectors

MM board production

lrfu

Choice of MM+GEM hybrid detection

- Better spatial and time resolutions than for resistive detector
- No solution yet for serial production of buried resistor boards

saclay

MM technology transfer to industry

- Collaboration between IRFU and CIREA / ELVIA group (french PCB producer) since 2011, partner on « SPLAM » ANR agency funding
- ELVIA masters bulk technology since mid-2012, producing 40x40 cm² active area prototypes since then

13 October 2015

Production and installation of 12 detectors + spares

Challenges for the production

- Large size PCB with very thin design in the pixel area (60µm thin strips with 60µm insulation)
- Gluing of 200 µm thin PCB 4 mm Rohacell foam sandwich

Production of bulk boards at ELVIA company

- Took place from end 2014 to September, peak production 2 boards every 2 weeks
- Cf. poster ۰

lrfu

saclay

Installation at CERN

- 3 stations of 4 planes (X, Y, U, V), station 1 was already equipped in 2014 with prototypes of pixelized MM
- Station 2 installed in April, station 3 in May •
- Station 1 equipped with final detectors in June

PixelMM efficiencies at low µ flux

CEA DSM Ir

PixelMM efficiencies at low µ flux

All magnets on Station 2 1.1 V vs U of strip efficiency with noise correction V vs U of strip efficiency with noise correction V vs U of strip efficiency with noise correction V vs U of strip efficiency with noise correction Strips 2U Strips 2X Strips 2Y Strips 2V sacla Eff = 98.6 % Eff = 97.7 % _20 _15 _10 _5 -15 -10 20 0 -20 -15 -10-5 10 15 20 20 -5 0 15 5 10 15 20 20 -10 10 15 20 0 5 U(cm) Ll(cm) Very preliminary V vs U of pix efficiency with noise correction V vs U of pix efficiency with noise correction V vs U of pix efficiency with noise correction V vs U of pix efficiency with noise correction V(cm) **Pixels 2X Pixels 2Y Pixels 2U Pixels 2V** 0.6 0.5 Eff = 96.8 % Eff = 98.2 % Eff = 98.2 % Eff = 99.1 % $_{5}$ _structuredureduredureduredured $_{\rm s}$ tuuluuluuluuluuluuluuluul $_{5}$ tuuluuluuluuluuluuluuluuluuluuluu -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 4 5 5 3 4 5 -3 -2 -1 0 1 2 4 5 U(cm) U(cm) U(cm)

PixelMM efficiencies at low µ flux

PixelMM efficiencies at high intensity hadron beam

PixelMM efficiencies at high intensity hadron beam

The COMPASS experiment gets its new hybrid pixelized Micromegas for high particle flux

CEA DSM Irfu

13 October 2015

PixelMM efficiencies at high intensity hadron beam

Pixel MM spatial residuals at low µ flux

Pixel MM spatial residuals at low µ flux

Pixel MM spatial residuals at low µ flux

PixelMM spatial residuals vs position at low µ flux

Pixel MM spatial residuals at high hadron flux

Pixel MM spatial residuals at high hadron flux

PixelMM spatial residuals vs position at high hadron flux

Pixel MM spatial residuals at high hadron flux

PixelMM spatial residuals vs position at high hadron flux

Conclusions

lrfu

saclay

New COMPASS detectors installed and working

- Good performances: efficiencies and spatial resolutions
- Preliminary results, further works to be done to complete them
- No result on time resolution yet for 2015 run, require more calibration work

Hybrid Micromegas+GEM detectors proven to be very promising concept

- Discharge rate strongly decreased at high intensity hadron beam, without efficiency loss
- Performance as good as or better than old classic Micromegas

Buried resistor MM boards promising but further studies required

- Complicated structure, R&D necessary for serial production of such boards
- Good efficiency and spatial resolution, but bad time resolution, origin not understood