Status of the R&D activities for the upgrade of the ALICE TPC

Alexander Deisting for the ALICE TPC Collaboration

GSI Helmholtzzentrum für Schwerionenforschung GmbH

$13^{\rm th}$ of October, 2015

The ALICE TPC

The ALICE TPC

- 90 m³ gas volume read out by 18 inner and 18 outer readout chambers per side
- Readout chambers utilising MWPC with pad readout
- To prevent ions from moving into the drift volume a gating grid is used
- Maximal readout rate with gating grid ~ 3.3 kHz

LHC Run 3

- Increased rate of Pb Pb collisions of up to 50 kHz (\rightarrow 20 µs)
- On average 5 events piled up inside the TPC
- \Rightarrow New readout chambers which allow continuous readout are needed

Requirements on the new chambers:

- ▶ Preserve the momentum and dE/dx resolution of the old chambers ($\frac{\sigma_{\rm E}}{E_{\rm 55\,Fe}} \le 12\%$)
- Provide an Ion Back Flow of less than 1% in order to keep the space charges in the TPC at a tolerable level
- Stable operation at the LHC Run 3 conditions

New GEM-based readout chambers

Gas Electron Multiplier foils

- 50 µm polyimide foil with a 5 µm copper layer on each side
- Holes with (typically) 140 µm pitch and 80 µm (50 µm) outer (inner) diameter
- In stacks: Offer high gain and good stability at reasonable voltages

Outline

- R&D with small prototypes
 - Optimisation of IBF and Energy resolution
 - Charging-up studies of quadruple GEM stacks
 - Discharge studies
- Stability tests with a large prototype at CERN SPS
- dE/dx studies with a large prototype at CERN PS
- Studies of electromagnetic sagging utilising large foils
- Conclusions

Gas choice

- $\blacktriangleright \ \ \text{High ion drift velocity} \Rightarrow \mathbf{Ne}$
- Admixtures of CO₂ as well as CF₄ perform similar in terms of r and rφ distortions
- ► The TPC (and the gas system) is not validated for $CF_4 \Rightarrow Ne-CO_2$ (90-10)
- Gas amplification in Ne-CO₂ starts around 4 kV cm⁻¹
 - \Rightarrow Ne-CO₂-N₂ (90-10-5)

- \Rightarrow Quadruple GEM stacks
 - Extensive R&D done with small prototypes (10 cm × 10 cm GEMs) at several institutes
 - Different GEM geometries in different combinations tested

Measurements

- ▶ Energy resolution: ⁵⁵Fe
- IBF: X-Ray guns

 Optimisation of energy resolution and IBF are competing effects

Baseline settings for the ALICE TPC upgrade

Baseline settings

The baseline solution employs standard-pitch (S, 140 μm) and large-pitch (LP, 280 μm) GEMs, rotated 90° relative to each other

 Current solution provides an IBF of 0.6 %-0.7 % as well as an energy resolution of 11 %-12 %

Optimised voltage settings

 $\Delta V_{\rm GEM2}$ $\Delta V_{\rm GEM3}$ $\Delta V_{\rm GEM1}$ E_{T2} E_{T3} $E_{\rm Ind}$ $\Delta V_{\rm GEM4}$ E_{T1} 4 kV 2 kV 0.1 kV 4 k\ 270 V 250 V 270 V 340 V cm cm cm Drift field: 400 V cm^{-1}

Charging-up studies with a quadruple GEM stack

Question:

How long would it take to move from a "safe" set of voltage settings to a setting where the detector is operational? "*studies on charge-up effects and gain stability for the ALICE TPC upgrade with GEMs*", Ba. thesis by Y.Vetter, Uni HD

Procedure

- Irradiate the detector with a source
- Measure the current on the pad plane while and after the ramping
- Fit the sum of two exponentials to the obtained data

$$I(t) = I_0 - A_1 e^{-\frac{t-t_0}{\tau_1}} - A_2 e^{-\frac{t-t_0}{\tau_2}}$$

► τ₂ - Charge-up time of the polyimide foil

Results of the charging-up studies

- AVD is used to supply HV to the foils
- "Safe":= 75% of the "ready" settings
- Measurements done with 300 ppm H₂O (100 ppm planned for the upgraded ALICE TPC)
- Cool-down time := time during which the detector was in "safe" settings
- ► $\tau_1 \sim 35 \, \mathrm{s}$ ► $\tau_2 \sim 12 \, \mathrm{min}$

 \rightarrow Both, τ_1 and τ_2 do not depend on time the detector was turned off

 \Rightarrow The stabilisation of the gain takes long enough to follow it with the online calibration

Status of the R&D activities for the upgrade of the ALICE TPC - MPGD 2015 (A. Deisting)

10

Discharge studies

Discharge studies @ CERN SPS (Dec. 2014) - 1/2

- \rightarrow The rates of the sources lead to too long measurement times
- \rightarrow A large prototype should be tested and irradiated over its full surface

Setup at CERN SPS

- \blacktriangleright $\sim 2 imes 10^6 \, \pi/{
 m spill}$ (150 GeV)
- ▶ Produce particle showers with an Fe brick $\rightarrow \sim 1.8 \times 10^8 \, \pi/\text{spill}$
- Line up test detectors with their readout plane facing the beam

Discharge studies @ CERN SPS (Dec. 2014) - 2/2

Readout

- Current readout on the pad plane (rate measurement)
- Read out the induced voltage signal on the pad plane (discharges)

Results

- ▶ 3 discharges seen \Rightarrow (6 ± 4) \times 10⁻¹² discharges/incoming hadron
- ► 5 discharges per HI-run and GEM stack expected for the ALICE TPC in Run 3 CERN-LHCC-2015-002 See "Addendum to the Upgrade TDR of the ALICE TPC",

$\mathrm{d}E/\mathrm{d}x$ Measurement

Was extensively treated in the talk by A. Mathis on Monday:

Study of the dE/dx resolution of a GEM Readout Chamber prototype for the upgrade of the ALICE TPC

In brief:

- Tested an Inner ReadOut Chamber at CERN PS with an electron and π-beam (1 GeV)
- Discriminated e from π with a Cherenkov detector
- Checked the separation in dE/dx with the IROC

 $\Rightarrow {\rm d} E/{\rm d} x$ separation power is compatible with that of the existing TPC

Foil sagging

The foils of the GEM stack with the largest foil dimensions were framed without spacer grid \Rightarrow Measure the sag due to electrostatic attraction of the foils (*Reminder: Gaps of* 2 mm)

- Foils touch without spacer grid
- One grid piece is enough to prevent the foils from touching
- No visible sagging with a cross was observed

- The ALICE TPC has to be upgraded in order to cope with the high rates at LHC Run 3
- Readout chambers equipped with quadruple GEM stacks were found to fulfill the requirements. It has been shown that they provide:
 - ▶ $0.6\% \le IBF \le 0.7\%$
 - \blacktriangleright Energy resolution of 11 %-12 % at the $^{55}\mathrm{Fe}$ photopeak
 - \blacktriangleright Discharge probability of \Rightarrow (6 \pm 4) \times 10 $^{-12}$ discharges/incoming charged hadron
 - Electron/π separation in dE/dx compatible with the separation power of the existing TPC
- Studies of 4GEM stacks showed that the charge-up is slow enough to follow it with online calibration
- A suitable spacer grid is needed to prevent the large foils of the future readout chambers from sagging due to electrostatic attraction

Backup

Gas choice

Relative GEM orientation

In collaboration with H. Müller and RD51 a AVD was tested as an alternative to the baseline solution which foresees cascaded power supplies for the GEM stacks of the upgraded TPC

See "Studies on charge-up effects and gain stability for the ALICE TPC upgrade with GEMs", Bachelor thesis by Y.Vetter, Uni Heidelberg

AVD

- Distributes voltages from a single channel power supply to all the HV channels of a quadruple GEM stack
- Due to the transistors in the resistor chain the load dependence of the HV supply is reduced
- E-fuses protect GEMS in case of discharge across the GEM

Triggering the E-fuse on the GEM2 connections:

- As the current through a GEM rises above 40 µA, the resistance of the E-fuse rises from 50 k Ω to 6.5 M $\Omega \rightarrow$ triggering the fuse results in reducing the voltage across GEM2
- If the current across the GEM2 connectors goes down again, the E-fuse resistance falls eventually back to 50 kΩ
- The plot shows the influence of this operation on the voltage across GEM3

First experience with the Active Voltage Divider -3/3

Temperature effects

- PCB dissipates about 4 W of heat
- After 40 min the PCB reaches its equilibrium temperature of 40°
- With an additional 4 Ω heating resistor, the time to reach the equilibrium state could be significantly reduced
- In an ALICE-like environment cooling has to be applied to the board

