Upgrade of the CMS Muon System with Triple-GEM Detectors

B. Dorney On behalf of the CMS Collaboration

CMS Trigger and Original Muon System Design

- Redundant muon system
 - Drift tubes (DT); |η| < 1.2
 - Resistive plate chambers (RPC);
 |η| < 1.6
 - Cathode strip chambers (CSC);
 1.0 < |η| < 2.4
- Original RPC's coverage planned to extend to entire CSC range
 - Un-instrumented due to rate capability concerns
- Only CSC system provides muon information beyond |η| > 1.6

- Two part trigger system
 - Hardware: Level 1 (L1) R≈100kHz
 - Software: High-level-trigger (HLT) R≈1kHz

Brian L. Dorney

CMS GE1/1 System

۲ (m)

5

2

MPGD 2015

- GEM technology
- 36 superchambers per CMS endcap
 - Two detectors per superchamber
 - Spanning 10° in φ
 - Detectors per endcap: 72
- Maximum η coverage
 1.6 < |η| < 2.2
- Additional wheels planned for Phase II Upgrade
 - GE2/1 and ME0
 - Not covered in this talk

Brian L. Dorney

Original Muon System Limitations

- Cannot measure muon direction at trigger level
 - i.e. bending angle
 - Low magnetic field
 - Small lever arm (11cm)

ĆÉRN

CMS Collaboration, CERN-LHCC-2015-012, CMS-TDR-013

- Challenge to distinguish between low and high transverse momentum \mathbf{p}_{T} muons
 - Scattering in iron return yoke

GE1/1 Improvements

- Improves muon p_T measurement
- Allows measurement of muon bending angle at trigger level

CERN

 Overall reduction in L1 trigger rate

GE1/1 Detector Design

CMS Collaboration, CERN-LHCC-2015-012, CMS-TDR-013

- Size: 1-1.2 × 0.22-0.45 cm²
- Single-mask GEM foil × 3
- Gap configuration: 3/1/2/1 mm
- Readout sectors 3 × 8 in φη-plane
- Total channel count: 3072
- Passive resistive divider
 - All fields change *simultaneously*
- Final gas mixture still under study

MPGD 2015

GE1/1 Detector Performance 1

- Effective gain constant up to 1e5 kHz/cm²
 - CMS only requires 10 kHz/cm²
- Discharge probability P_D measured to be 10⁻³ to 10⁻⁵
- Effective gain in CMS is 5 × 10³; extrapolating gives P_D = 9×10⁻¹⁰

GE1/1 Detector Performance 2

- **Test beam measurements** conduction at CERN and Fermilab
- **Detection efficiency** ≈98%
- **Excellent time and spatial** resolutions

ERN

Entries

GEM Electronics

Brian L. Dorney

MPGD 2015

Front-End Electronics: VFAT3

- Successor to VFAT2
- Tracking & trigger data
 - Fixed latency trigger bits
 - Full granularity of track data after receipt of level 1 accept (input trigger)
- Improvements with respect to VFAT2
 - Increased S/N ratio due to programmable shaping time

VFAT3

ADC

Shaper

×128 channels

Preamp

CBM Unit (Calibration, Bias &

Monitorina)

- Decreased time walk via CFD
- Increased L1 latency to beyond 12.5 μ s (up from 6.5 μ s)
- Communication @ 320 Mbps; 8 × VFAT2 rate!
- Increased granularity at trigger level (8 × S-bits as VFAT2)

SRAM2

SRAM1

Control Logic + Data Formatter

Trigger path

Unit

Comm

Port

Front-End Electronics: Optohybrid (OH)

- Xilinx Virtex 6 FPGA
- Two bidirectional optical link
 - Slow control signals
 - Tracking & trigger packets to back-end electronics

- One unidirectional optical link
 - Fixed latency trigger packets to CSC trigger motherboard for combined CSC-GEM L1 trigger

Front-End Electronics: GEM Electronics Board (GEB)

- Six layer PCB; 1mm thick
- Tight space requirements in GE1/1 envelope
 - No room for cable routing to each VFAT
- GEB provides:
 - Power to VFATs
 - Signal routing between VFAT3's and optohybrid

Back-End Electronics: µTCA Architecture

- MicroTCA carrier hub (MCH) for comm. and slow control
- Custom MCH: AMC13
 - Link with CMS central DAQ
 - Provides trigger timing & control signals down link
- MP7 Advanced Mezzanine Card
 - Xilinx Virtex 7 FPGA
 - Each card provides 72 optical transceivers and receivers operating above 10 Gbps
 - Eight cards in 1 μ TCA crate needed to readout entire GE1/1 system

GE1/1 Performance: Trigger Efficiency

 ME1/1 Level-1 trigger motherboard builds "local charged track" stubs
 – Uses GE1/1 & ME1/1 CSC hits
 ME1/1 transition 0.6

- Improvement on stub reconstruction over full GE1/1 |η| coverage observed
 - Added redundancy of GE1/1 system also removes dip in efficiency at ME1/1 transition region
- Recall L1 trigger rate is also significantly reduced!

GE1/1 Performance: Muon Reconstruction – Efficiency

- Standalone muons
 - Muons reconstructed with only the muon system
- Standalone muon efficiency is improved with addition of GE1/1
- Pessimistic scenario of loss of ME1/1 system due to aging was studied
 - Significant recovery in performance from added redundancy of GE1/1 system is observed

CERN

GE1/1 Performance: Muon Reconstruction – Fake Rate

- Fake rate (aka misidentification probability) caused by:
 - Charged hadrons transiting calorimeters into muon system
 - Decays in flight of kaons, pions, etc...
- Pessimistic scenario of loss of ME1/1 system due to aging was studied
 - Reduction in standalone muon fake rate observed due to added redundancy of GE1/1 system is observed

CERN

GE1/1 Slice Test

- During 2016-2017 year end technical stop of LHC we will install a 40° wedge of GE1/1 in CMS
- Invaluable operations experience before full installation in LS2

• Finally experience real collision data!

Further Details This Week...

• Jeremie Merlin's talk:

- "Aging and outgassing studies for GEM detectors in the LHC high-rate environment"
- Michael Tytgat's poster:
 - "Quality Control for the first large areas of triple GEM chambers for the CMS endcaps"

• Archie Sharma's poster:

- "Simulation of the CMS GEM System"
- Marek Gruchala's poster:
 - "Charge particle detection performance of large area triple-GEM detectors for the forward muon upgrade of the CMS detector"

Luigi Benussi's two posters:

- "A novel application of Fiber Bragg Grating (FBG) sensors in MPGD"
- "Characterization of GEM foils and materials: simulation, measurements and interferometric monitoring tools"

• Waqar Ahmed's poster:

 "Status of the electronics & DAQ for the Triple-GEM project for the upgrade of the CMS forward muon spectrometer"

Giovanna Saviano's poster:

"Candidate eco-friendly gas mixture for MPGDs"

Summary

- GE1/1 is a mature upgrade for the forward muon system of CMS
- GE1/1 will maintain, and extend, the current reach of the CMS physics program
- We will install a 40° wedge of GE1/1 in CMS within the next 14 months
- And with the approval of the LHCC and the CERN Research Board we are go for installation in LS2!!!

BACK – UP

CMS GE1/1 System

CERN

- GEM technology
- 36 superchambers per CMS endcap
 - Two detectors per superchamber
 - Spanning 10° in φ
 - Detectors per endcap: 72
- Maximum η coverage
 - 1.6 < |η| < 2.2
- Additional wheels planned for Phase II Upgrade
 - GE2/1 and ME0
 - Not covered in this talk

