# R&D on a Novel Fast Timing Micropattern (FTM) Gaseous Detector

University of Pavia and INFN Pavia: I. Vai, P. Vitulo University of Pavia: F. Fallavollita Gent University: S. Salva INFN Bari: M. Maggi CERN: S. Franchino, R. de Oliveira, A. Sharma, B. Dorney, J. Merlin

## Fast Timing Micropattern Detector V1

#### Structure of the Fast Timing Micropattern (FTM) detector – Version 1 FR4 support (3.2 mm) Drift Cu electrode Layer 1 G1 TOP Resistive coating + 50 um kapton **Res-WELL 1** Resistive kapton G1 BOT Reference<sup>.</sup> R. De Oliveira, M. G2 TOP Resistive coating + Layer 2 Res-WELL<sup>2</sup> 50 um kapton Maggi, A. Sharma, Resistive kapton G2 BOT arXiv:1503.05330v1 128 um coverlay **RO** board Cu electrode FR4 support (3.2 mm) **Two independent drift-amplification stages (Layer 1** & 2 in the picture above) **DLC coating on the top** 140 µm 70 µm \_1 **Chemical etched foils** 50 µm Antistatic polymide foils 25 μm Two layers separated by **Pillars** 100 um

**Pick-up electrode** 

For similar studies see G. Bencivenni et al, 2015 JINST 10 P02008

### Test with X-Ray – Diagram of the connections



Signal read at <u>the same time</u> from **ReadOut** and from **Drift** (through capacitive coupling)  $\rightarrow$  important to check the *transparency* of the layers

HV applied to:

- Drift
- G1 Top
- G1 Bottom
- G2 Top

G2 Bottom always at Ground

 $\rightarrow \underline{\text{Different HV diagram depending}} \\ \underline{\text{on which Layer is on study}} \rightarrow \\ \underline{\text{dedicated diagrams in next slides}}$ 

#### Some pictures of the assembly











GEM 2 top, resistive coated kapton

DRIFT cover and gas connectors

### HV schema

HV filters on each channel: G2BOT at ground









100

120 140 160

180

200

220 240

x-coordinate (µm)

260 280 300

320

S. Franchino

Surface: Electric field norm (V/m) Streamline: Electric field





X-Ray box completed and approved by RP on 22nd of June

Source: Ag - MiniX Amptek

- Flux:  $10^6 \text{ s}^{-1} \text{ mm}^{-2}$  on the axis at a distance of 30 cm (50 keV/1  $\mu$ A)
- Movement on X-Y-Z direction

#### **Equipped with**:

- 6 gas connectors (3 in + 3 out)
- 8 SHV connectors
- 8 LEMO connectors for signal
- 2 RS232 connectors for Preamp supply



Shelf to place and fix the detector under the X-Ray

## Setup available

Gas System:

- In/Out Gas Line with Ar/CO2 70/30 from the TIF Gas System  $\rightarrow$  <u>Flow</u>: 0,3 l/h
- Bottle Ar/CO2 97,5/2,5 + 2 Flowmeters + Pressure Regulator for independent Gas System

#### HV System:

- 2 Caen N1471A with 4 channels in total
- Caen GeCo software for the remote control of the modules

#### Readout chain:

- 2 Preamp ORTEC 142PC
- 2 Amplifiers ORTEC 474-
- 1 Fan-IN-Fan-OUT
- 1 CAEN N844 discriminator with 1 mV step threshold
- 1 Dual Timer
- 1 Coincidence unit
- 1 Logic Fan IN Fan OUT
- 1 Scaler
- Scope



### Some results



Error bars contained in the markers

As the gap is really small (~ 250  $\mu$ m), the amplification field penetrates in it  $\rightarrow$  even if the drift field is 0, particles in the gap feel the amplification field and move towards the amplification region

→ to compensate this effect and reduce the interaction rate to 0 we had to apply an inverted Drift field

This effect is confirmed also by COMSOL simulations

Result obtained with just one amplification stage ON



The **rate is linear** with the incident flux for both the series.

The differencies betwen the two series may be due to <u>not perfect settings of the discriminator</u> <u>thresholds</u>

Result obtained with just one amplification stage ON

The scan in amplification field gives an <u>indication of</u> <u>the operational value</u> of the layer.

Over 120 kV/cm the layer starts to be **really noisy** (up to 500 Hz of noise)





Result obtained with just one amplification stage ON

#### Some spectra



Result obtained with just one amplification stage ON

## Fast Timing Micropattern Detector V2

### Fast Timing Micropattern 2 (FTM-V2) detector



First prototype with just one amplification layer

Already assembled  $\rightarrow$  test started at TIF

#### **Resistive Micromegas-like structure**

- All materials are flexible foils (drift, mesh, anode)
- Resistive foils are made by 25um XC Dupont Kapton
- The top and bottom PCBs are made by standard FR4 PCB material
- Pillar between each foil is 125 or 250um thick photosensitive coverlay

### Fast Timing Micropattern 2 (FTM-V2) detector

![](_page_15_Figure_1.jpeg)

Final design with 4 amplification layers

### Assembly of Fast Timing Micropattern 2 (FTM-V2)

![](_page_16_Picture_1.jpeg)

The design

Top view

![](_page_17_Figure_2.jpeg)

S. Franchino

#### The design

![](_page_18_Figure_1.jpeg)

#### S. Franchino

#### The design

![](_page_19_Figure_1.jpeg)

#### Overall view.

#### Red: Cu for top plane;

- RO pad
- GND

#### Green: Cu support plane

- GND
- HV connections
- RO pads
- RO panasonic connector

#### S. Franchino

### **COMSOL** Simulations

Mesh: 150um Surface: Electric field norm (V/m) Streamline: Electric field

![](_page_20_Figure_2.jpeg)

## Waveforms acquired with FTM-V2

![](_page_21_Figure_1.jpeg)

Ar/CO2 70/30 X-Ray source

![](_page_21_Figure_3.jpeg)

Ar/CO2 70/30 109Cd source

### One result...

Linearity in different positions of the detector 9000.00  $E_{ampl} = 47.2 \text{ kV/cm}$ 8000.00 E<sub>drift</sub> = 800 V/cm  $V_{th} = 50 \text{ mV}$ 7000.00 Measured Rate (Hz) 00.0005 (Hz) 00.0006 (Hz) Position 1 Position 2 Position 3 Position 4 2000.00 Position 5 1000.00 0.00 0.00 20.00 40.0080.00 100.00 120.00 140.00 60.00 Source current (uA) Error bars hidden by markers.

![](_page_22_Picture_2.jpeg)

X-Ray source placed in **different positions** of the detector active area  $\rightarrow$  rate measured at different value of the X-ray source currents, i.e. different fluxes.

The **response is linear** in each position analyzed.

The rate measured is not the same in every position, i.e. the detector response is **not uniform**.

S. Salva

#### Efficiency and Timing measurement $\rightarrow$ Cosmic stand

![](_page_23_Picture_1.jpeg)

For measurements with cosmics, it has been placed on a table at TIF, turned by 90°.

In this picture the support for the FTM is still missing  $\rightarrow$  it will be added here, together with an additional scintillator

Cosmic stand will have dedicated gas panel and HV system  $\rightarrow$  assembly on-going

![](_page_24_Picture_0.jpeg)

- We have made a first characterization of FTMv1 with Ar/CO2 70/30
- We have seen the detector structure is transparent to the signal; and we have studied it's behavior in different operational conditions
- We will go to a test beam next week at CERN SPS H4; goal to measure efficiency and time resolution
- We have assembled the FTMv2 and its characterization is ongoing

### Acknowledgements

- Special thanks and congratulations should go to:
  - I. Vai, S. Salva, F. Fallavollita, and S. Franchino
- Without their dedication and efforts spent understanding/ characterization the detector this talk would not be possible
- And to the rest of the team!!!