Study of Negative-Ion TPC using µ-PIC for Directional Dark Matter search

Tomonori Ikeda (Kobe Univ.)

Kentaro, Miuch (Kobe Univ.) DANIEL, Snowden-ifft (Occidental College) JEAN-LUC, Gauvreau (Occidental College) +NEWAGE Group

- 1. DM Experiments with MPGD
- 2. NEWAGE
- 3. Motivation
- 4. Measurement
- 5. Summary

1. DM experiment with MPGD

Directional Dark Matter Search with MPGD

- Dark matter is coming to the earth from Cygnus
- Reconstruct 3D track of nuclear recoil using MPGD
- Recoil angle distribution gives strong evidence.

DM experiments using Gas Detector

MIMAC

2. NEWAGE

NEWAGE0.3b' Detector @Kamioka mine

μ-PIC: Anode pitch 400 μm Gasgain ~10³

LCP 100µm

MPGD2015 T.Ikeda

• Detection volume 30×30×41 cm³

 Gas CF₄(76 torr)
 Good for spin dependent DM search

Latest Result

- Black point is nuclear recoil event
- Gradation color: detector eficiency

(K.Nakamura et.al, PTEP(2015)043F01s)

3. Motivation

\square Main background event in µTPC

- ⑦ in the high energy region
- C in the low energy region

α -rays (U/Th-chain) from the glass cloth in PI 100µm of µ-PIC is dominant

D We already could XY fiducialize

The Z fiducialization is, if possible , very important.

MPGD2015 T.Ikeda

Absolute Z-position cannot be known in self-trigger.

MPGD2015 T.Ikeda

Z-fiducialization used by DRIFT

Physics of the Dark Universe 9-10(2015)1-7

- The first measurement of absolute Z-position in a self-triggering TPC •
- Using negative ion gas CS_2 with a few percent O_2 •

Negative Ion Gas Candidates

CF4(electron drift(normal) gas)

- Being used for NEWAGE
- Typical drift velocity : ~cm/µs

- Operation Gas gain 3000 (76Torr)
- Amplifer gain 160mV/pC(ASDchip)

4. Measurement

Test CS2 with u-PIC+GEM @Occidental collage

• CS₂ 76Torr and 38Torr give more than 1000 total gain!

ΔGEM Dependence

- μ -PIC+GEM system with CS2 worked very well.
- Adding O₂ gas , we will be able to observe minority peak.

MPGD2015 T.Ikeda

4.2 SF₆

SF₆ Gas Gain

- Total gas gain is about 300.
- When we improve the amplifier , this gas gain is sufficient. Then minority peak will be appeared.

2015/10/15

MPGD2015 T.Ikeda

Drift Velocity of SF₆⁻

• At 76Torr, Photon feedback was observed between u-PIC and GEM.

5. Summary

- A first test of μ -PIC+GEM with negative ion gas was performed.
- For CS_2 , the total gas gain is higher than 10000.
- For SF_6 , the total gas gain is about 300.
- SF₆ gas needs optimization , going to study
- In the future, with both of them, minority peaks will be observed.

MPGDs with negative ion gas will create more opportunities for low background experiment.

Thank you for your attention!

4. Back-up

Electronics for CS₂

• We used CREMAT's CR-111 charge sensitive preamplifier.

Cremat, Inc. CR-111 rev. 2 Figure 1

0.85"

File Vertical Timebase Trigger Display Cursors Measure	Math Analysis Utilities Help	Specifications	Assume temp =20 $^{\circ}$ C, V _s = ±	6.1V, unloaded output
	VDRIFT=-1.5kV GEM=-800V/-460V	Preamplification channels Equivalent noise charge (ENC)* ENC RMS	CR-111 1 630	units electrons
	uIPC anode=550V	Equivalent noise in silicon	0.1 6	femtoCoul. keV (FWHM)
CH2 (anode 13cstrips sum)		ENC slope Gain	3.7 0.13 6.2	elect. RMS / pF volts / pC mV / MeV(Si)
20mV/div CH4 (cathode 13cstrips		Rise time ** Decay time constant	3 150	ns μs
sum) www	100us/div	Unsaturated output swing Maximum charge detectable per event	-3 to +3 1.3 x10 ⁸ 21	volts electrons pC
C3 Measure P1:rms(C1) P2:rms(C2)	P3: P4: P5: P6:	Power supply voltage (V _s) maximum minimum	$V_s = \pm 13$ $V_s = \pm 6$	volts volts
value 48.25 mV 75.57 mV status 200 mV 10.0 mV/div 20.0 mV/div 10.0 mV/div 20.0 mV/div 20.0 mV/div	Timebase 10 µs Trigger 22	Power supply current (pos) (neg)	7.5 3.5	mA mA
78.00 mV 76.00 mV -78.00 mV 79.00 mN ♦ -48.39 mV ♦ -71.93 mV ♦ 47.06 mV ♦ -86.96 mN		Power dissipation Operating temperature Output offset	70 ^{***} -40 to +85 +0.2 to -0.2	mW °C volts
LeCroy	6/7/2015 4:29:42 PM	Output impedance	50	ohms

Electronics for SF₆

MPGD2015 T.Ikeda

Spin dependent(SD) cross section

- The SD cross section is written using $\sigma_{\rm SD}$ as

$$\sigma_{\chi-N}^{\rm SD} = \sigma_{\chi-p}^{\rm SD} \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \frac{\lambda^2 J(J+1)}{0.75}$$

Isotope	J	Abundance($\%$)	$\mu_{ m mag}$	$\lambda^2 J(J+1)$	unpaired nucleon
$^{1}\mathrm{H}$	1/2	100	2.793	0.750	proton
$^{7}\mathrm{Li}$	3/2	92.5	3.256	0.244	proton
$^{11}\mathrm{B}$	3/2	80.1	2.689	0.112	proton
$^{15}\mathrm{N}$	1/2	0.4	-0.283	0.087	proton
$^{19}\mathrm{F}$	1/2	100	2.629	0.647	proton
23 Na	3/2	100	2.218	0.041	proton
$^{127}\mathrm{I}$	5/2	100	2.813	0.007	proton
^{133}Cs	7/2	100	2.582	0.052	proton
$^{3}\mathrm{He}$	1/2	1.0×10^{-4}	-2.128	0.928	neutron
$^{17}\mathrm{O}$	5/2	0.0	-1.890	0.342	neutron
$^{29}\mathrm{Si}$	1/2	4.7	-0.555	0.063	neutron
$^{73}\mathrm{Ge}$	9/2	7.8	-0.879	0.065	neutron
$^{129}\mathrm{Xe}$	1/2	26.4	-0.778	0.124	neutron
$^{131}\mathrm{Xe}$	3/2	21.2	0.692	0.055	neutron
^{183}W	1/2	14.3	0.118	0.003	neutron

Amplifier for liquid Argon TPC

- Development of LTARS ASIC
 - pre-amp. & shapers in a chip
 - high density (32ch I n a chip)
 - power supply voltage ±0.9V
 - ENC ~2000@300pF
 - conv.gain ~9V/pC

(developed with KEK e-sys group, one of Open-it projects <u>http://openit.kek.jp/</u> project/LTARS2014/LTARS2014)

LTARS2014 ASIC chip (5mm x 5mm)

Detection efficiency in detector coordinate

