

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Recent results of double phase LAr LEM TPC R&D

Shuoxing Wu Institute for Particle Physics, ETH Zurich

on behalf of WA105 collaboration

MPGD 2015, Trieste, 12-15 Oct 2015

ETH Deep Underground Neutrino Experiment (DUNE) WA105-

DUNE physics potential:

1. Accelerator based neutrino physics

- Mass Hierarchy determination over 5σ level over full δ_{CP} range for an exposure of 300 kt·MW·year, corresponding to 7 years' data with a 40-kt LAr detector and a 1.07-MW 80-GeV beam.
- δ_{CP} measurement 3σ sensitivity for 75% of δ_{CP} values at an exposure of 1320 kt·MW·year.
 - 5 σ sensitivity for 50% of δ_{CP} values at an exposure of 810 kt·MW·year.
- Sterile neutrino
- 2. Neutrino astronomy:
 - Solar neutrino
 - Atmosphere neutrino
 - Super-nova neutrino
- 3. Proton decay search

ETH Double phase LAr LEM TPC as DUNE far detector WA105-

ETH

Events from double phase LAr LEM TPC WA105-

40x76x60 cm³ LAr LEM TPC

Δ

ETH

Events from double phase LAr LEM TPC WA105-

40x76x60 cm³ LAr LEM TPC

The 3x3 m² charge readout plane (CRP) for DUNE WA105

ETH

The WA105 experiment at CERN

double phase LAr LEM TPC demonstrators

6x6x6 m³ DLAr in beam test 144 50x50 cm² LEMs

Timescale: 2015-2016

Timescale: 2016-2019

The 3x1 m² CRP

LEM-Anode assemble

Wire holder and extraction grid

CRP is hang through 3 points

Design of the low capacitance 2D anode

- Geometry of hole layout
- Optimised values
 - 40 µm rim
 - 1 mm FR4 thickness
 - 500 µm diameter hole
 - 800 µm hole pitch and hexagonal layout

Shuoxing Wu ETHZ

ETH

10x10 cm² LEM charging-up behaviours in double phase operations

Stable gain over 20

ETH

Investigation on other production processes WA105-

50x50 cm² LEM quality assurance production and cleaning

0

50x50 cm² LEM quality assurance

- HV test in room temperature gas

- 50x50 cm² LEM has similar quality as 10x10 cm² LEM and there is no particular bad holes
- Operation of 50x50 cm² LEM in warm gas is difficult due to discharges
- 50x50 cm² LEM is expected to reach similar breakdown voltage as 10x10 cm² LEM due to very rare discharges of 10x10 cm² LEM

Test 50x50 cm² LEM in cold Ar gas

Shuoxing Wu ETHZ

WA105-

ETH

Well controlled gas conditions

WA105-

First test results

at P=0.989 bar, **T=88 K** and purity ~ 3 ppm

- two small 10x10 cm² LEM spark at 3500V and 3450 V. (consistent with previous double phase tests)
- 50x50 cm² LEM sparks at 4 corners at 2750 V.

at P=0.965 bar and **T=300 K**, ~ 10 ppm

- two small 10x10 spark at 1725 and 1750 V. (consistent with gas box tests)
- 50x50 sparks mainly at middle and sometimes corners at 1600 V.

Edge effect becomes more critical in cold Ar

Shuoxing Wu ETHZ

First test results

at P=0.989 bar, T=88 K and purity ~ 3 ppm

- two small 10x10 cm² LEM spark at 3500V and 3450 V. (consistent with previous double phase tests)
- 50x50 cm² LEM sparks at 4 corners at 2750 V.

at P=0.965 bar and T=300 K (Ar 90% CO2 10%)

• 50x50 cm² LEM sparks only at middle at 1900 V.

Edge effect becomes more critical in cold Ar

ELEM and gain is larger in the last holes

http://www.ccsem.infn.it/issp2015/newtalents/HamarG_Erice_Leopard_201506.pdf

Next steps with 50x50 cm² LEM cold test

Test with 4 10x10 cm² LEMs together

 $50x50 \text{ cm}^2 \text{ LEM}$ with 2 mm guard ring and 2 mm FR4 clearance

Next steps with 50x50 cm² LEM cold test

Effective gain

To build a micro-TPC including anode, LEM and extraction grid to simulate the charging-up.

Shuoxing Wu ETHZ

voltage

Next step:

Summary

- > LEM has the potential application for future neutrino physics the 40-kTon DUNE experiment will require large area (700 m² LEM for one 10-kTon module).
- > We have a defined process of production and quality insurance of 50x50 cm² LEMs.
- > The 10x10 cm² LEMs have a known behaviour and works at a gain over 20 at a
- discharge rate typically < 1 per day.
- > First tests 50x50 cm² LEM in cold argon gas suggests special care should be taken due to the edge effect.
- \succ The cold test with improved LEM is foreseen at beginning of November.

Thank you for your attention!

tested parameter	value	T	<i>x</i> (mm)	G_{eff}^{max}	E_0^{max} (kV/cm)
hole layout	hexagonal	0.59 ± 0.18	0.96±0.07	182	35
	square	0.34 ± 0.14	$0.94{\pm}0.08$	123	35
hole diameter	500 µm	0.46 ± 0.14	0.73±0.05	124	39
	400 µm	0.41 ± 0.11	$0.81{\pm}0.05$	124	38
	300 µm	0.20 ± 0.03	$0.88 {\pm} 0.04$	134	36
thickness	1 mm	0.46 ± 0.14	0.73±0.05	124	39
	0.8 mm	$0.46{\pm}~0.15$	$0.69{\pm}0.06$	88	41
	0.6 mm	0.58 ± 0.2	$0.55{\pm}0.06$	36	46
rim size	40 µm	0.34 ± 0.14	0.94±0.08	123	35
	80 µm	0.46 ± 0.14	0.73±0.05	124	39

arXiv:1412:4402

tested parameter	value	E ₀ [kV/cm]	run-time [hrs]	Number of discharges	τ [days]	G_{eff}^0	G_{eff}^{∞}	$\frac{G_{eff}^0}{G_{eff}^\infty}$
geometry	hexagonal	34	110	0	$0.32{\pm}0.07$	99	35	2.7
	square	34	52	0	$0.30{\pm}0.02$	65	27	2.4
hole	500 µm	38	24	0	0.53±0.05	70	20	3.5
	$400 \mu\mathrm{m}$	37	50	2	$0.53{\pm}0.07$	84	40	2.1
	300 µm	33.5	75	3	$0.75 {\pm} 0.04$	32	16	2.0
thickness	1 mm	38	24	0	0.53±0.05	70	20	3.5
	0.8 mm	42	82	0	$0.24{\pm}0.02$	73	22	3.3
	0.6 mm	46	95	1	$0.18{\pm}0.01$	51	27	1.9
rim size	80 µm	38	24	0	0.53±0.05	70	20	3.5
	40 µm	34	52	0	0.29±0.02	65	27	2.4

arXiv:1412:4402

Cosmic event in double phase TPC at effective gain~20

WA105-

Cosmic event in double phase TPC at effective gain ~ 150

WA105-

Other anodes tested

Other anodes tested

Gain uniformity

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Compact charge readout design

Towards a large area readout: the 40x76 cm² prototype

Large Electron Multiplier (LEM)

Macroscopic gas hole multiplier (Thick GEM)
more robust than GEMs (cryogenic temperatures, discharge resistant)
manufactured with standard PCB techniques
Large area coverable by 50x50 cm² modules
Light quenching within the holes

2D projective anode readout

- Charge equally collected on two sets of strips (views)
- Readout independent of multiplication
- Signals have the same shape for both views: -two collection views (unipolar signals)
 - -no induction view (bipolar signals) as in the case of a LAr-TPC with induction wires

So far largest area LEM/2D anode produced

Large area readout: the 40x76 cm² prototype

A. Badertscher et al. JINST 8 (2013) P04012

going into the ArDM cryostat

Final connection to the CAEN DAQ system

Eidgenössische Technische Hochschule Swiss Federal Institute of Technology ZI Results from the 40x76 cm² prototype

We have operated the detector for the first time in October 2011 for more than 1 month under controlled pressure: 1023±1 mbar A. Badertscher et al. JINST 8 (2013) P04012

Optimized field configurations:

LEM-Anode	1800 V/cm
LEM	35 kV/cm
LEM-grid	600 V/cm
extraction	2300 V/cm
drift	400 V/cm

charge sharing between the two collection views: (Q₁-Q₀)/(Q₁+Q₀)≈8%

