dalla Microdosimetria alla Nanodosimetria

INFN Laboratori Nazionali di Legnaro (Padova) 23-27 Marzo 2015

VI Scuola Nazionale

Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica, Applicazioni Spaziali e Fisica Medica

Valeria Conte conte@lnl.infn.it

UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO di FISICA e ASTRONOMIA GALILEO GALILEI

Caratterizzare la FISICA dell'interazione Radiazione-Sistema biologico

Volume di interazione

Target biologico

Danno da Radiazione: tipiche dimensioni delle strutture sensibili

Typical

Radioprotezione

Treatment planning in radioterapia

Ipotesi: Tradizionalmente si assume che il danno da radiazione è in relazione con l'energia assorbita in un dato volume.

Insuccesso della Dose Assorbita: Definizione di Relative Biological Effectiveness (RBE)

Survival of CHO-K1 Chinese Hamster Cells (Weyrather et al., 1999)

La Dose assorbita è facilmente misurabile e generalmente accettata, ma...

Energia necessaria a innalzare di 1 K la T di 1 l di acqua:

E = 4186 J

Absorbed dose $D_{\text{heating}} = 4186 \text{ Gy}$

 $D = 5 Gy \longrightarrow \Delta T = 0.001 K$

Full body, m = 100 kg

 $D = 5 Gy \longrightarrow \Delta T = 0.1 K$

Dose letale

The "True" Target Volumes of Life Science

The real target volumes of radiobiology and, therefore, also of radiation physics are the volumes of subcellular structures

Copyright: www.cellbio.utmb.edu - www.people.virginia.edu

Le risposte cellulari alle radiazioni ionizzanti sono eventi rari e tendono ad essere stocastici

Il danno da radiazione a geni o cellule inizia con il danno a segmenti di DNA

Radiazioni densamente ionizzanti sono più efficaci nell'indurre un danno non riparabile, rispetto alle radiazioni sparsamente ionizzanti

Danni semplici al DNA possono essere facilmente riparati

La capacità di riparo diminuisce con la complessità del danno

A livello del µm

A livello del nm

A livello del µm

A livello del nm

A livello del µm

A livello del nm

A «picture» of the track structure with a pixel of 10 nm

A livello del µm

A livello del nm

RIVELATORI PORTATILI

with a pixel of 10 nm

Microdosimetri miniaturizzati per adroterapia miniTEPC

Therapeutic ion- beams constrains

2.7 mm titanium sleeve that can be iserted inside a surgical French cannula

NANODOSIMETRIA

□ GENERALITA' DELLA STRUTTURA DI TRACCIA

□ IL SET UP SPERIMENTALE

Razionale La procedura di misura

DATA ACQUISITION AND DATA ANALYSIS

RISULTATI
 Il link alla radiobiologia

RBE dipende fortemente dalla struttura di traccia

Caratterizziamo la struttura di traccia misurando la distribuzione in frequenza del numero di ionizzazioni prodotte in volumi di dimensioni dell'ordine del nm

RBE dipende fortemente dalla struttura di traccia

LA STRUTTURA DI TRACCIA DI UNO IONE

Componente di traccia dovuta alle interazioni della particella primaria: Track-core region

Componente di traccia dovuta alle interazioni delle particelle secondarie: Penumbra region

RAZIONALE DELL'ESPERIMENTO

Una particella ionizzante passa a parametro d'impatto d, rispetto ad un volume cilindrico di diametro D.

La rilevazione delle ionizzazioni è basata sul conteggio dei singoli ioni o sul conteggio dei singoli elettroni

La rilevazione delle ionizzazioni è basata sul conteggio dei singoli ioni o sul conteggio dei singoli elettroni

SINGLE IONIZATION (ELECTRON) COUNTING

We count electrons

G

single electron gain distribution

Small volume \Rightarrow small $\nu \Rightarrow$ large avalanche \Rightarrow large fluctuations

Ionization measurements based on counting of individual electrons

Peak amplitude $h \propto v \times G$

 $\nu \setminus \bar{A}$

$$\left(\frac{\sigma_h}{h}\right)^2 = \left(\frac{\sigma_\nu}{\nu}\right)^2 + \left(\frac{\sigma_G}{\bar{G}}\right)^2 + \cdots$$

$$\left(\frac{\sigma_G}{\bar{G}}\right)^2 - \frac{1}{2}\left(\frac{\sigma_A}{\bar{G}}\right)^2 \qquad \left(\frac{\sigma_A}{\bar{G}}\right)^2 \text{ Single elements}$$

Single electron avalanche variance

Because of the small number ν of initial electrons, the resolution of measured signal is strongly influenced by gas gain fluctuations.

 $\land A$

STARTRACK: il rivelatore

SINGLE IONIZATION (ELECTRON) COUNTING

GRANDEZZE NANODOSIMETRICHE

 $M_1 = \sum_{\nu} \nu \cdot P_{\nu}(d)$ mean cluster size

Complementary cumulative distribution function

Interessante da un punto di vista radiobiologico, perché intuitivamente legata alla complessità del danno

DATA ANALYSIS: BACKGROUND SUBTRACTION

The measured cluster distribution $\tilde{P}_{\nu}(r)$ is the overlap of primary electron distribution $P_{\nu}(r)$ and a background distribution $B_{\nu}(r)$ ν

$$\tilde{P}_{\nu}(r) = \sum_{j=0}^{\infty} P_{\nu-j}(r) B_j(r)$$

Background distributions are also measured and unfolding procedure is applied

$$P_{\nu}(r) = \sum_{j=\nu}^{N_{max}} \tilde{P}_{j}(r) B_{j-\nu}(r)$$

Measured cluster size distributions

 $P_{v}(Q, d)$ is the probability of producing an ionization cluster of size v

The same radiation quality measured with the three different devices

Three radiation qualities measured with the Startrack counter at $D \approx 5$ nm

Cluster size distributions are different due to different target size and geometry

Cluster size distributions change with radiation quality

Measured cluster size distributions

 $M_1 = \sum_{\nu=1}^{\infty} \nu P(\nu)$

Comparison to Poisson-like distributions with mean value equal to measured M_1

The same radiation quality measured with the three different devices

Three radiation qualities measured with the Startrack counter at $D \approx 5$ nm

In general, due to contribution of secondary electrons, the measured cluster size distribution P_v can't be satisfactorily described by a Poisson-like distribution.

Cumulative probability F_2 of measuring a cluster size $v \ge 2$

Measurements performed with three different devices

The nanodosimetric quantity F_2 behaves as an almost universal function of M_1 , and shows a saturation effect like radio-biological cross sections as a function of LET.

Inactivation Cross Section of V79 Cells by Protons and Carbon ions

The inactivation cross section, , has been calculated from the final slope of the survival curves, at survival level I = 5%. In terms of α , β of LQ model and I:

Inactivation Cross Section of V79 Cells at 5% SL by Protons and Carbon ions

Inactivation Cross Section of V79 Cells at 5% SL by Protons and Carbon ions MC simulations to estimate M_1 in a propane filled cylinder with $D\rho \approx 0.8 \ \mu g \ cm^{-2}$ doi:10.1093/rpd/net322 Radiation Protection Dosimetry (2013), pp. 1-5 $D \approx 1$ nm in water AN UPGRADED TRACK STRUCTURE MODEL: EXPERIMENTAL VALIDATION B. Grosswendt¹, V. Conte^{2,*} and P. Colautti² Guest at LNL-INFN. ²LNL-INFN, viale dell' Inactivation cross sections nanodosimetric quantities 10^{2} 10^{2} 10^{1} 10¹ μm² Folkard96 μm² Belli98 Prise90 Goodhead92 Startrack, protons Perris $\sigma_{5\%}$ $\sigma_{5\%}$ 10^{0} 10^{0} Startrack, carbon-ions $^{\circ}$ Belli08 Furusawa00 Ion Counter, carbon-ions in C3H8 Weyrather99 Ion Counter carbon-ions in N2 Jet Counter, alpha particles $^{\wedge}$ Jet Counter, carbon-ions ∇ · eye fit 10-1 10⁻¹ 10⁻² 10⁻² 10-1 10^{0} 10^{0} 10^{2} 10^{-1} 10¹ 10^{2} 10^{1} M M

The nanodosimetric quantity F_2 (scaled to radiobiology) overlaps almost perfectly with inactivation cross sections at 5% plotted as a function of mean number of ionizations M_1

Inactivation Cross Section of V79 Cells by Protons and Carbon ions

inactivation cross section calculated from the **final** slope of the survival curves,

inactivation cross section calculated from the **initial** slope of the survival curves,

Target volume $D \approx 1$ nm in water

Target volume $D \approx 1.5$ nm in water

The nanodosimetric quantity F_k (scaled to radiobiology) overlaps almost perfectly with inactivation cross sections plotted as a function of mean number of ionizations M_{1-34}

Le quantità nanodosimetriche misurabili F_k si candidano quali descrittori appropriati dell'efficacia radiobiologica. Necessaria la calibrazione con i dati di radiobiologia.

 F_{k}

Microdosimetria e Nanodosimetria non potranno mai replicare la complessità della risposta biologica. Esse misurano "solo" le caratteristiche fisiche della radiazione. Una volta <u>calibrate</u> sulla risposta di un sistema biologico ad un dato campo di radiazione, possono predire la risposta del medesimo sistema biologico ad un diverso campo di radiazione La struttura di traccia di una particella è complicata, se osservata da vicino, ma....

Grandezze nanodosimetriche misurabili consentono una descrizione più semplice della fisica dell'interazione radiazione-materia — Migliore comprensione

Visione per il futuro:

- Studi di radiobiologia per validare il modello nanodosimetrico.
- Sviluppo di rivelatori nanodosimetrici avanzati, di più facile uso e portatili (nanostructures technology: nanotextured surfaces, nanotubes and nanoparticles)