

Study of a Thermal Annealing Approach for Very High Total Dose Environments

S. Dhombres¹⁻², J. Boch¹, A. Michez¹, S. Beauvivre², D. Kraehenbuehl², F. Saigné¹

RADFAC 2015

26/03/2015

¹ Université Montpellier, IES (CC 05006) - UMR UM2/CNRS 5214 - 860, Rue de St Priest, 34095 Montpellier, France ² Systheia, 672 rue du Mas de Verchant, 34000 Montpellier, France

Environment : Civil Nuclear Power (Power plant) and Space

environment until 300 krad then 1Mrad and more?

1. Context

Main objective : extend CMOS APS image sensor lifetime in harsh environment

- Develop thermal annealing method^[1]
 - \rightarrow Heat to recover initial parameters
- Apply this method at regular time to recover frame

Parameter degradation

Define fundamental parameters :

Bias, temperature, annealing duration

[1] F. Roig, L. Dusseau, J. Boch, et al., « A Thermal Annealing Approach to Extend Metal Oxide Semiconductor Devices Lifetime Exposed to Very High Dose Levels », IEEE RADECS, Sept 2012, Biarritz (France).

Typical X-Rays degradation

Image sensor principle

- CMOS image sensor : pixel matrix
- Active-Pixel Sensor (APS) : photo-detector + active amplifier
- \bullet **Pixel** : place of conversion photons \rightarrow electrons by photoelectric effect

« Pinned-PhotoDiode 4T APS »

1st Test of Thermal annealing

Experiments

- \rightarrow Irradiation with 22 krad step
- \rightarrow Condition tests : all pins grounded

- \rightarrow Continuous thermal annealing at High Temp.
- \rightarrow Condition tests : all pins grounded

: 01h00 – 200°C : 02h30 – 200°C : 03h30 – 200°C : 06h30 – 200°C : 71h30 – 25°C

<u>High temperature</u> (> 150°C : several minutes) allows to recover <u>faster</u> than low temperature (<150°C : several hours)

Reliability in time X- Rays Experiments

- → Sensor A without annealing :
 - Irradiation by 25 krad step
 - All pins grounded

- \rightarrow Sensor B with annealing (175C/30 minutes) :
 - Irradiation by 25 krad step
 - All pins grounded

At 175°C/30min : 40 irradiation and annealing cycles and 1 Mrad !!

[2] S. Dhombres, A. Michez, J. Boch, and al., « Study of a thermal annealing approach for very high total dose environments », IEEE Trans. Nucl. Sci., Dec 2014

Reliability in time Experiments

Keys Parameters of Thermal Annealing

X- Rays Experiments

To keep an acceptable level:

- Increase of Temperature
- Increase of Thermal Annealing Duration
- Decrease of Dose Step

Thermal annealing protocol

IRF130 power MOSFETs

- \rightarrow Annealing is also sensitive to electric field
- \rightarrow CMOS APS image sensor = complex component
- \rightarrow Tested on IRF130 N-power MOSFET and vertical structure.

Method development and Better understanding of mechanisms

Thermal annealing protocol

Negative bias during thermal annealing

Negative bias during annealing

Thermal annealing protocol

Positive bias during thermal annealing

Positive bias during annealing

Dose rate : 108,1 rad/s Bias during irradiation 10 krad : +12V Bias during annealing 100°C : +20V

Complete recovery after 27h

For 0V, -20V bias \rightarrow recovery > 1000h !

Bias/Duration effects

Trapping/Detrapping

Temperature effect

- 1 Radiation-induced electron-hole pairs generation
- 2 Carriers drift-diffusion in their respective allowed band
- ③ Free carriers trapping
- ④ Recombination of trapped carriers by free carriers of opposite type
- 5 Thermal reemission of trapped carriers to their respective allowed band

Bias effect Poole-Frenkel and tunneling effects

Conclusion / Perspectives

Conclusion

- \rightarrow Heating image sensor allows to :
 - recover degraded electrical parameters (dark current)
 - keep an usable frame after 1Mrad and more.
- \rightarrow 40 irradiations/annealing cycles were supported at high temperature : reliability in time
- \rightarrow No premature breakdown observed due to thermal cycles if temperature < 150°C

Perspectives

- \rightarrow On going :
- Understanding of physical mechanisms with TCAD ECORCE (Pixel modeling in 2D).
- Law extraction depending of thermal annealing duration and temperature

Thank you for your attention

Any questions ?

Dark current mechanisms Origin

- Measurement in complete dark without illumination.
- Dark count = an electron is generated and pixel electronic considers it as an incident photon
- 4 main mechanisms :
 - Surface generation from trap states at the Si-SiO2 interface
 - Trap-assisted thermal generation of charge in the space charge layer
 - The diffusion current due to thermal generation of charge in the bulk
 - Crosstalk between neighboring pixels during charge collection, storage, and possibly readout