

Evaluation on neutron SEB threshold of COTS power MOSFETs with TCAD simulations

Ing. Carlo Giordano, PhD RADFEC 2015, 26/03/2015, Legnaro (PD)

Contents

• Introduction;

- SEB experiments;
- TCAD simulations;
- conclusions.

What is a Single Event Burnout?

- Single Event Burnout (SEB) is a catastrophically failure mode for power transistors, triggered by a single energetic particle, when the device is biased in blocking mode (Vgs=0);
- the macroscopic effect of SEB is a localized short circuit between drain and source contacts;
- very popular topic inside the aerospace community since the early '90s

Terrestrial neutrons

SEB threshold voltage

- SEB can be observed if the applied bias is greater of a threshold value;
- in order to decrease SEB occurrences, the maximum applicable voltage can be de-rated (performance penalty)

$$R_{DS(on)} \sim V_{BR(DSS)}^{2.4 \dots 2.6}$$

TCAD predictions

- SEB threshold voltages of COTS power transistors can be characterized:
 - experimentally;
 - TCAD simulations.
- In this work, we estimate the SEB threshold voltage of a commercially available power MOSFET by mean of TCAD simulations and we compare the simulation results with the experimental data obtained from irradiation tests

Contents

- Introduction;
- SEB experiments;
- TCAD simulations;
- conclusions.

UniPA neutron facility

Neutrons generated by 4
 Am-Be sources, placed at
 the bottom of a water
 tank, with the following
 reaction:

$$\alpha + {}^9_4 \mathrm{Be} \longrightarrow \mathrm{n} + {}^{12}_6 \mathrm{C}$$

- where alphas come from the natural decay of Am;
- continuous source.

Test circuit

Capacitor and DUT boards

Test equipment block scheme

27/03/2015

Weibull statistical analysis

• Failure times were recorded in order to calculate the empirical fraction yield that was compared with the cumulative pdf of the Weibull model:

$$\begin{array}{c|ccc}
\hline t & \hat{F}(t) \\
\hline t_1 & 1/N \\
\hline t_2 & 2/N \\
\vdots & \vdots \\
\hline t_N & 1
\end{array}$$

$$F(t) = 1 - \exp\left[-\left(\frac{t}{\tau}\right)^{\beta}\right]$$

• β and τ are respectively the shape and the scale parameters.

Failure rate and MTTF estimations

- Weibull fit of the empirical fraction yield allows the determination of β and τ;
- Failure rate and MTTF calculated as:

$$\lambda(t) = \frac{\beta}{\tau} \left(\frac{t}{\tau}\right)^{\beta - 1}$$
$$MTTF = \tau \Gamma \left(1 + \frac{1}{\beta}\right)$$

In many experiments, β is close to 1

UniPA experiment results

- Tests performed on a commercial 950V power MOSFET;
- SEB threshold voltage roughly estimated as the average between the "last" safe and the "first" not safe test voltages;

#	$V_t \; (\% B V_{dss})$	N_{failed}	β	MTTF (y)	λ (FIT)
1	80	0	n/d	n/d	n/d
2	85	0	n/d	n/d	n/d
3	95	7	1.4	14.6	$7.8 imes 10^3$
4	100	16	0.9	3.8	$3.0 imes 10^4$

• SEB not induced by radioactive decays.

Burnout traces

Contents

- Introduction;
- SEB experiments;
- TCAD simulations;
- conclusions.

"Heavy ion" model

$$G_{ion}(l, w, t) = G_{LET}(l) \cdot R(l, w) \cdot T(t)$$

$$R(w,l) = \exp\left[-\left(\frac{w}{w_t(l)}\right)^2\right]$$
$$T(t) = \frac{1}{\sqrt{2\pi}t_c} \exp\left[-\frac{(t-t_0)^2}{2t_c^2}\right]$$

4 parameters are need to completely define a ionizing track:

- entry point and direction;
- LET or LCD;
- projected range.

Problems arising with neutrons

- Neutrons ionize indirectly, inducing the emission of secondary charged particles, with a given probability;
- 2 or more charged recoils, multiple ionizing tracks:
 - for each track, LET and range are to be known;
 - neutron energy distribution among several products (recoil kinematics);
- the interaction point can be not only in the silicon area, but also in the other layers

Nuclear analysis

27/03/2015

DUT materials analysis

Passivation TEOS+Nitride (1+1)µm	↑		
FrontSide Metal Al-Si 4.5µm	1		
		Region	Chemical elements
Silicon (PWRMOS)	280 µm	Active+Substrate	Si, B (body and p-pillar dopant), P (source and n-pillar dopant), As (drain dopant), O (SiO ₂ oxide)
		Passivation	TEOS (Si(OC ₂ H ₄) ₄) and Si ₃ N ₄
Silicon (substrate)		Front metal	AI, Si
Silicon (substrate)		Back metal	Ag, Ni, Ti
BackSide Metal Ti-Ni-Ag 0.5µm	4		

27/03/2015

Active area

Region	Doping	Concentration $[cm^{-3}]$
Source	n+	1×10^{20}
Body	p+	1×10^{19}
Drain	n+	1×10^{19}
N-pillar	n	1×10^{15}
P-pillar	p	$3 imes 10^{15}$

Reaction rates

Reaction	Layer	E [eV]	$r [s^{-1}]$	Q-value [eV]	Decay	Half life	Decay product
$^{14}N(n, \alpha)^{11}B$	Passivation	$1.8 imes 10^6$	72	$-1.6 imes 10^5$	-	Stable	-
$^{14}N(n,p)^{14}C$	Passivation	$1.0 imes 10^{-5}$	23008	$6.3 imes10^5$	β^{-}	5.7×10^5 years	¹⁴ N (stable)
$^{14}N(n,p)^{14}C$	Passivation	$4.9 imes 10^5$	95	$6.3 imes10^5$	β^{-}	5.7×10^5 years	¹⁴ N (stable)
$^{14}N(n,p)^{14}C$	Passivation	$1.3 imes 10^6$	58	$6.3 imes10^5$	β^{-}	5.7×10^5 years	¹⁴ N (stable)
$^{28}\mathrm{Si}(\mathrm{n},\alpha)^{25}\mathrm{Mg}$	Active area	$7.9 imes10^6$	1176	$-2.6 imes10^6$	-	Stable	-
$^{28}\mathrm{Si}(\mathbf{n},\mathbf{p})^{28}\mathrm{Al}$	Active area	$7.7 imes 10^6$	2063	$-3.9 imes10^6$	β^{-}	2.2 minutes	28 N (stable)

27/03/2015

Ionizing tracks, energy computation

$$T_l^{1/2} = \frac{(m_n m_l T_n)^{1/2} \cos \theta}{m_h + m_l}$$

$$\pm \frac{\{m_n m_l T_n \cos^2 \theta + (m_h + m_l) [m_h Q + (m_h - m_n) T_n]\}}{m_h + m_l}$$

$$T_h = Q - T_l + T_n$$

$$\sin \xi = \left(\frac{p_l}{p_h}\right) \sin \theta$$

Reaction	T_n [MeV]	T_l [MeV]	$T_h \; [\text{MeV}]$	θ [°]	ξ [°]
$^{14}N(n, \alpha)^{11}B$	1.8	1.5	$1.2 imes 10^{-1}$	5	11
$^{14}N(n,p)^{14}C$	$1.0 imes 10^{-11}$	$6.0 imes10^{-1}$	$4.2 imes 10^{-2}$	5	5
$^{14}N(n,p)^{14}C$	$5.0 imes10^{-1}$	1.1	$9.3 imes10^{-3}$	5	15
${ m ^{14}N(n,p)^{14}C}$	1.3	2.0	$5.1 imes 10^{-3}$	5	27
$^{28}\mathrm{Si}(\mathrm{n},\alpha)^{25}\mathrm{Mg}$	7.9	5.2	$1.2 imes 10^{-1}$	5	13
$^{28}\mathrm{Si}(\mathrm{n,p})^{28}\mathrm{Al}$	7.7	3.8	$2.6 imes10^{-2}$	5	12

27/03/2015

Ionizing tracks, LCD and range (in Si)

Calibration

In order to perform predictive SEB simulations, it is necessary to select an adequate impact ionization model and to proper calibrate the reverse static I/V curve.

Calibration (cont.)

Parameter	Default value	Tuned value
τ_{max} (electron)	$1.00\times 10^{-5}\mathrm{s}$	$8.50\times10^{-5}\mathrm{s}$
τ_{max} (hole)	$3.00 imes10^{-6}\mathrm{s}$	$2.55 imes 10^{-5} \mathrm{s}$
b (electron)	$1.23 imes10^6\mathrm{Vcm^{-1}}$	$1.17 imes 10^{6} { m V cm^{-1}}$
b (hole)	$2.04 imes 10^{6} { m V cm^{-1}}$	$1.93 imes 10^{6} { m V cm^{-1}}$

27/03/2015

Design Of Experiments

- The simulation parameters are:
 - test voltage (85%, 95% and 100% of BVdss);
 - several nuclear reactions;
 - interaction point in the active area: neck
 region, channel and body at 3 different depths

Results

- As in the UniPA experiment, we detected SEB at the 95% of BVdss.
- In addition, the simulation gives us further details:
 - SEB are caused only by the nuclear reaction with alpha particle emission;
 - only few interaction point are really effective, even for drain voltages higher than the SEB threshold;
 - the most sensitive regions are the neck and the channel in the first 30 µm from the silicon/metal boundary.

Drain current and lattice temperature

Field quantities

27/03/2015

Contents

- Introduction;
- SEB experiments;
- TCAD simulations;
- conclusions.

Final remarks

- Simulation results are in agreement with the experimental data;
- TCAD simulations allow us to assess which nuclear interaction induces SEB and where!
- For more energetic neutrons (spallation phenomena), Montecarlo tools are needed.

Thanks for the attention!

