Radiation-induced Single Event Transients Modeling on Ultra-Nanometric Technologies

<u>Boyang Du</u>, Luca Sterpone Politecnico di Torino Torino, Italy

Sarah Azimi Noshirvani University of Technology Babol, Iran

Goal

To propose a new methodology combining an analytical and a pattern-oriented simulative model for analyzing the sensitivity of SET on ultra-nanometric technologies

Collaboration

The radiation experiment has been carried out with collaborations of:

- Université Catholique de Louvain (UCL)
- European Space Agency
- Microsemi

Outline

- Introduction
- Radiation Experiment
- The analytical model
- The pattern-oriented simulative model
- Conclusion

Introduction

- Increasing susceptible to Single Event Effects
 - Technology scaling
 - Aging
 - Radiation particles (even at sea level)
- Single Event Upset (SEU)
 - ECC
 - TMR
 - Configuration memory scrubbing (SRAM-based FPGA)
- Single Event Transients (SET)
 - TMR (Higher Level)
 - Broadening and Filtering effects of gate itself

Introduction

Analysis of SEEs

- SEUs
 - Simulation (RTL even behavioral level, cycle-accurate)
 - FPGA emulation
- SETs
 - Simulation (discrete simulation interval)
 - FPGA emulation (difficult to inject)
 - Electric pulse injection
 - Radiation experiment (need to separate from SEUs)

The Radiation Experiment

- Heavy-ion experiment at the Cyclotron of the Université Catholique de Louvain (UCL)
- Microsemi ProASIC3 Flash-based FPGA (130-nm)
- A RISC micro-processor (RISC5X from OpenCores)

RISC5X : 20MHz

Fluence = 3.04E8 (particles)

Kripton ion

The Design under Test

The Software Benchmark

// Loop through each element of RAM

```
for each ram element re in RAM:
    for i in [0, 8) : {
        re = 0x01 << i
        for j in [0, 500): // Add 0 to the RAM element for 500 times
            re += 0x00
            output_to_PORTA(re)
        }
</pre>
```

The Hardware Setup

The Experimental Results

The experimental result is the starting point of more effective and realistic analysis of SETs

The analytical model

The pattern-oriented simulative model

Executed in three steps

- Identification of sensitive nodes
- Propagation
- Classification

The pattern-oriented simulative model

The pattern-oriented simulative model

	Gate t	to Gate	Broad	lening	Coeffi	cients
--	--------	---------	-------	--------	--------	--------

Gate to Gate	Broadening [ns]
FFA – G1	-0.128
G1 – G2	0.458
G2 – G4	0.070
G2 – G3	-0.090
G3 – G6	0.480
G6 – G7	0.092
G7 - FFC	0.140
G4 – G5	-0.094
G5 - FFB	0.130

FFs maximal broadening pulses

Flip-Flop	Maximal Pulse [ns]		
FFB	0.436		
FFC	0.952		

Conclusion

- The analytical model is able to provide SET pulse broadening/filtering profile per gate and can be extended to different cell library (e.g. opencell-15nm)
- The pattern-oriented simulative model can use the results coming from the analytical model to analyze a circuit providing information such as Gate-to-Gate broadening effect and FF profiles
- With the results coming from two models, further actions can be made:
 - SEE-aware place & route
 - Simulation-based fault injection

Thanks for your attention

Questions?

