A new analog front-end for the HL_LHC upgrade of the CMS experiment

E.Monteil - M. Rolo - N. Demaria - L.Pacher - A. Rivetti

RADFAC day, Legnaro March 26, 2015

The HL_LHC upgrade

- During the phase 2:
 - The luminosity of the machine will be increased by an order of magnitude (5x10³⁴ / 10³⁵ cm⁻² s⁻¹ foreseen)
 - Unprecedented Pile-Up conditions (140-200 collisions per event)
 - Unprecedented radiation levels (around 1 GRad in 10 years)

The HL_LHC upgrade

	PARAMETER or FEATURE	1st generation LHC phase 0	2nd generation LHC Phase 1	3rd generation LHC Phase 2
	Max Particle Flux	~50 MHz/cm ²	~200 MHz/cm ²	~500 MHz/cm ²
(Max Pixel Flux	200 MHz/cm ²	600 MHz/cm ²	2 GHz/cm ²
	Rad. Hardness	1.5 MGy	3.5 MGy	10 MGy
	Pixel Dimension	100x150 mm ²	100x150 mm ²	25x150 mm ²
U		50x400 mm ²	50x250 mm ²	50x100 mm ²
	Signal Threshold	2500-3000 e ⁻	1500-2000 e ⁻	~1000 e ⁻
	L1 Trigger Latency	2-3 US	4-6 US	6-20 US
	Power Budget	~0.3 W/cm ²	~0.3 W/cm ²	<0.4 W/cm ²
	Electronics technology node	250nm CMOS	250nm CMOS (CMS) 130nm CMOS (ATLAS)	65nm CMOS

• New readout chip required

- The present one can not survive the extreme Phase 2 conditions
- RD53, a CMS-ATLAS collaboration, has been developed in order to design the new chip
- INFN contribute: CHIPIX 65 collaboration, a group 5 project approved in 2013 for the 2014-2016 period. 7 INFN sections involved (TO, MI, BA, PD, PI, PV, PG)

Main challenges

- Surviving the extreme HL_LHC conditions
- Very high particle flux (2 GHz/cm²)
- Maintaining or improving the detector performance
 - New pixel size (50x50 μ m² or 25x100 μ m²)
- Low power architecture
 - Required to maintain the material budget (cooling) as low as possible
 - 0.4 W/cm² -> 10 μ W per pixel

Analog Front-End studied in Torino

- PREAMP: one stage CSA with Krummenacher feedback
- COMPARATOR: synchronous with latch, AC coupled
- THRESHOLD TRIMMING: made by hardware, offset self-compensated
- FAST ToT: local oscillator inside the comparator

Performance summary

- **Low power**: around 5.5 µW/pixel (analog part)
 - Compliant with the requirements
- Low noise: around 100e- for Cdet = 100 fF
 - Ok for a threshold of 1 ke⁻
- Fast ToT: 30ke⁻ signal into max 250 ns
 - Changing the feedback current it can be run in fast or slow ToT mode
- No threshold trimming via DAC
 - Hardware solution (corrections stored in capacitors)
- Dimensions: area of around 26x39 µm²

VFE layout

• CSA + Disc + Calibration circuit + Fast_Tot = 26x39 um2

- MOM (Metal-Oxide-Metal) capacitors used
- Room to make it smaller -> Work in progress on a new version

Power consumption

- Static power consumption around 4.5 μW
 - Preamplifier -> 3 μW
 - Comparator -> 1.5 μW
- Dynamic power consumption around 1 μ W
- On average the total analog power consumption is around 5.5
 µW per pixel
- This value corresponds, considering a 50x50 μm^2 pixel, to a power consumption of 0.22 W/cm^2
 - OK -> ~50% of 0.4 W/cm²

Signal at the preamp output

- Ifeed = 40 nA -> Fast ToT mode
- Ifeed 10 nA -> Slow ToT mode (lower ballistic deficit)

Offset compensation

• Results obtained with Monte Carlo simulation

Noise performance

• Simulation results:

- For Cdet = 100 fF (nominal value):
 - Noise ~ 100e⁻ for fast ToT configuration
 - Noise ~ 80e⁻ for slow ToT configuration (30ke⁻ in 1us)

Fast ToT

- The signals in figure are (from top to bottom):
 - 40 MHz clock, fast ToT oscillator, analog signal at latch input

Fast ToT

Corners - TOT_Freq vs temp

Ongoing activity & further developments

- A first version of this design has been submitted in october 2014
- First tests on the chip started in February 2015
- Radiation tests to be done in the next months
- Activity of simulation and layout still ongoing
 - New layout of the submitted design
 - Design of variants of this design
 - A second submission planned in the next months

Conclusions

- The Phase 2 upgrade of the CMS silicon pixel detectors requires the design of a new readout chip
- The simulation results comply with the requirements of the upgrade
- A first version of a new front-end has been submitted in october 2014 and now there are test ongoing on it
- An upgraded version of this design and other options will be submitted in the next months

Backup

Full layout

CMOS radiation damage

18