

High spatial resolution external beams

<u>Lorenzo Giuntini</u>

Department of Physics, University of Firenze and Istituto Nazionale di Fisica Nucleare, sezione di Firenze, Italy

> VI Scuola Nazionale "Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica, Applicazioni Spaziali e Fisica Medica" RADFAC 2015 thematic day

ADFAC 2015 thematic d 23-27 Marzo 2015 INFN-LNL

Summary

introduction - extracted beams: why?

- 1. external beams:
 - ion beam induced damage
 - beam exit windows
- 2. external microbeam set-ups
- 3. examples of interest in CH field conclusions

Extracted beam

External beams: why?

Advantages:

- •no limitations to the dimensions of the objects to analyze
- •ease of handling, moving and monitoring the target
- •no time-consuming pump-down and vent of the vacuum chamber
- •no need for sampling
- •effective target heat dissipation
- •no charging effects \Leftrightarrow no coating

Beam extraction into atmosphere

- Beam extraction into the atmosphere requires some cautions not to degrade beam quality.
- Angular and energy straggling induced by the window and the external path in the atmosphere worsen beam quality:
- increase beam angular divergence
- increase beam dimensions
- broaden energy distribution of transmitted ions [$\sigma_E \propto (\rho t)^{0.5}$]

i.e. the shorter the thickness of the external path (window + atmosphere), *the better the external beam*

Polymeric (kapton) 8 µm thick windows

ELSEVIER

Nuclear Instruments and Methods in Physics Research B 210 (2003) 75-78

www.elsevier.com/locate/nimb

In situ monitoring of polyimide windows for external ion microbeams

A. Kinomura *, Y. Mokuno, A. Chayahara, N. Tsubouchi, Y. Horino

National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

Abstract

Damage of polyimide windows for external ion microbeams was monitored by analyzing backscattering protons from the window. A 1.5 MeV proton microbeam focused to approximately $50 \times 50 \ \mu\text{m}^2$ was transmitted through the polyimide window from vacuum to oxygen atmosphere. The changes in backscattering spectra of the window were monitored as a function of irradiation dose up to $2 \times 10^{18} \ \text{H}^+/\text{cm}^2$. For comparison, the polyimide window was irradiated in vacuum in the same way as the oxygen case. The backscattering spectra drastically changed in the case of oxygen. We observed that the carbon spectrum width, corresponding to the thickness of the window, substantially decreased with increasing the irradiation dose. The in situ monitoring of backscattering protons demonstrated the ability to detect the damage of the window and to predict the rupture of the window.

8 μm kapton windows

spot sizes for the irradiation were about 50×50 μ m². The proton beam was not scanned during the irradiation. The beam current for the irradiation was adjusted to 1 nA. A Si surface-barrier detector (SSD) was located at a scattering angle of 150° as shown in Fig. 1.

A. Kinomura et al. | Nucl. Instr. and Meth. in Phys. Res. B 210 (2003) 75-78

mitted from the vacuum side to the vacuum side.

5MeV H⁺→ Polyimide (θ=150°)

Fig. 3. Backscattering spectra of the polyimide windows irradiated with oxygen atmosphere. The 1.5 MeV proton microbeam was transmitted from the vacuum side to the oxygen side.

77

8 µm kapton windows

Fig. 4. Spectrum width of carbon as a function of proton dose for the vacuum and the oxygen irradiations. For the irradiation with oxygen atmosphere, a rupture of the polyimide window occurred after the irradiation of 2×10^{18} H⁺/cm² as indicated with an arrow. For the irradiation in vacuum, the polyimide window was almost stable in terms of the backscattering spectra.

- let's assume $\phi = 10^{17} \text{ H}^{+} \text{cm}^{-2}$ as the fluency security threshold
- incoming beam diameter: 1 μm
- security threshold for 1μm² beam:
 10⁹ H⁺
- Let's assume a beam current; I = 1.6 nA = 1.6 10^{-9} A
- number of ion per second hitting the target: 1.6 10^{-9} A/1.6 10^{-19} H⁺s⁻¹ = 10^{10} H⁺s⁻¹
- window usage time t_{st}=100 ms

Breaking of an 8 µm kapton window

Non-polymeric windows: the pioneer study

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Volume 54, Issues 1-3, 2 March 1991, Pages 47-51

Thin Si₃N₄ windows for energy loss STIM in air

H.W. Lefevre, R.M.S. Schofield

D.R. Ciarlo

Abstract

The use of thin (102 nm) windows of Si₃N₄ to transmit an electronically rastered microbeam of MeV protons into ambient air with small scattering is reported. The windows were made by anisotropic etching of Si, exposing about <u>1 mm² of silicon nitride film integrally attached to a silicon supporting frame</u>. Stress measurements on films of several thicknesses yielded a value of Young's modulus of 350 GPa. Energy loss scanning transmission ion micrographs of several small living animals are presented. Focused beams of <u>100 pA</u> have been passed through the films without failure.

Non-polymeric windows: a survey

ELSEVIER Nuclear Instruments and Methods in Physics Research B 136–138 (1998) 339–343

An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

T. Calligaro *, J.-C. Dran, H. Hamon, B. Moignard, J. Salomon

Laboratoire de Recherche des Musées de France, CNRS UMR171. Palais du Louvre, 75 041 Paris Cedex 01. France

Abstract

External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 µm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 µm can be reached.

Non-polymeric windows

Table 1 Different exit windows used on the AGLAE external beam line and transmission properties for 3-MeV protons						
Material	Thickness (µm)	Energy loss (keV)	Energy straggling (keV)	Angular divergence (deg)	Minim (µm)	um spot size achieved
Al	0.75	17	2.0	0.2	30	
Al	10	233	15.9	0.8	150	Wicrobeam
Zr	2	73	7.3	0.85	200	setun
Kapton	8	129	9.0	0.35	500	Jun

Energy loss and straggling as well as angular divergence are based on TRIM calculations which provide the energy and angular distributions of transmitted ions; TRIM data have been subsequently processed with the STATISTICA program. The angular divergence is taken as the standard deviation of the projected angular distribution.

For mm-sized beams, the exit window has an area of about 4 mm² and is made of either a 10 μ m Al foil in PIXE mode or of a 2- μ m-thick Zr foil in RBS, NRA or PIGE ones. The smaller beam spot of about 20–30 μ m (see below) has been obtained with a 0.75 μ m thick Al foil supported by a 150 μ m thick sapphire wafer with <u>a 100 μ m diameter hole.</u> 100 nm Si₃N₄ definitely better than 750 nm Al foil

100 nm $Si_3 N_4$

VS

750 nm Al

(trim 2008 simulations)

	H (10) Into Layer	1 (1 laye	rs, 2 ato	ms)	
	Layer Name	Width (A)	Density	Si (28,086 N (1	
1	Si3N4	1000	3,440	0,42857 0	
	Lattice Binding Energy			2	
_	Surface Binding Energy			4,7	
				v	
8	XY Longitudinal		-		
+	50 A				
ŀ	Dept	h vs. Y-	Axis		
Ŀ					
.		and a star	a and	a ser en ser estas	
1	والمتحد والمتحد والمحر والمتحد والمعالية والمعالية	a same	Same South	Control Constraints	
		Adaptie Kathing	and an	and the second second	
			1 (S.) 2 B. (S.	an tent	
Г			1 B.	AN ARNS	
ŀ	100 C 100 C				
L					
ž					
2				1111 A	
- 5	50 A				
90	0A1	arget Depth		1000 A	
0	ave Save de Print I	shel Clear			
_	are Jareza Flint L	abei cieai			
-					
T /	ADCET DATA				
T/	ARGET DATA	1 louara	1 otom	-1	
7/ ?	ARGET DATA H (3000) into AI (1 layers,	1 atoms	5)	
?	ARGET DATA H (3000) into Al (Layer Name	1 layers, Width (A)	1 atoms Density	5) Al (26,982 So	
?	ARGET DATA H (3000) into Al (Layer Name Al Lattice Binding Scene	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982 So 1,00000	
?	ARGET DATA H (3000) into Al (Layer Name Al Lattice Binding Energy	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982) So 1,00000 3	
?	ARGET DATA H (3000) into Al (Layer Name Al Lattice Binding Energy Surface Binding Energy	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982) So 1,00000 3 3,36 ~	
7	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982) So 1,00000 3 3,36 ~	
T/ ? 1 1	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Disclosure Ending Energy	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982) So 1.00000 3 3.36	
7/ ? 1 2 4	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy	1 layers, Width (A) 7500	1 atoms Density 2,702	5) AI (26,982) So 1.00000 3 3.36 ~ ~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy District Stress XY Longitudinal 50 A Dept	1 layers, width (A) 7500	1 atoms Density 2.702	5) AI (26,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy District State XY Longitudinal 50 A Dept	1 layers, width (A) 7500 	1 atoms Density 2.702	5) AI (26,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy District Construction XY Longitudinal 50 A	1 layers, width (A) 7500 	1 atoms Density 2.702	5) AI (26,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Surface Binding Energy Surface Binding Energy District Construction XY Longitudinal 50 A Dept	1 layers, width (A) 7500 	1 atom: Density 2.702	5) AI (26,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Surface Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atoms Density 2.702	5) AI (25,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Directore Binding Energy Binding Energy Directore Binding Energy Binding Energy Bind	1 layers, Width(A) 7500 	1 atom: 2.702	5) AI (25,982) So 1.00000 3 3.36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Disclosure Ending Disclosure Ending XY Longitudinal 50 A Dept	1 layers, Width (A) 7500 	1 atom: 2.702	5) AI (26,982 So 1,0000 3 3,36 ~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atom: 2.702	5) AI (26,982 So 1,0000 3 3,36 ~~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atom: Density 2.702	5) AI (26,982) So 1,0000 3 3,3,6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atom: 2.702	5) AI (26,982) So 1,0000 3 3,3,6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atoms 2.702	5) AI (26,982) So 1,0000 3 3,3,6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atoms 2.702	5) AI (26,982) So 1,00000 3 3,3,6 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atoms 2.702	5) AI (26,982) So 1,00000 3 3,36 	
	ARGET DATA H (3000) into AI (Layer Name AI Lattice Binding Energy Distance Binding Energy	1 layers, Width (A) 7500	1 atoms 2.702	5) AI (26,982) So 1,00000 3 3,3,6 	
	ARGET DATA H (3000) into AI (Layer Name I AI Lattice Binding Energy Distance Binding Energ	1 layers, <u>width (A)</u> 7500 	1 atoms 2.702	5) AI (26,982) So 1,00000 3 3,3,6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Save As Print Label Clear

Layer Name Width (A) Density Si (28,086) N (1) 1 Si3N4 1000 3,440 0,42857 0 2 he 2000000 0,000179 0,00000 0 Lattice Binding Energy 2 2 2 5: XY Longitudinal 0 33 0 0 4: 24.7 um Depth vs. Y-Axis 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 125 mm - Target Depth - 2.00 mm 2 1 Layer Name Width (A) Density AI (25,382 He tot) 1 Layer Name Width (A) Density AI (25,382 He tot) 1 Layer Name 2000000 0,000179 0,0000 2 he tot) 20000000	in (our of into arti	ne (2 laye	ers, 3 at	oms)				
1 Si3N4 1000 3.440 0.42857 0 2 he 2000000 0.000179 0.00000 0 Lattice Binding Energy 2 2 2 2 - XY Longitudinal Image: Constraint of the second	Layer Name	Width (A)	Density	Si (28,086	N (1-			
2 he 2000000 0.000173 0.00000 0 Lattice Binding Energy 2 2 2 2 S: XY Longitudinal 3 3 3 3 + 24.7 um Depth vs. Y-Axis - - - 90 90 90 - - - 90 - - - - - - - 90 - <td< th=""><th>1 Si3N4</th><th>1000</th><th>3,440</th><th>0,42857</th><th>0</th></td<>	1 Si3N4	1000	3,440	0,42857	0			
Lattice Binding Energy 2 B- XY Longitudinal Image: Constraint of the second	2 he	20000000	0.000179	0.00000	0			
S-XY Longitudinal Image: State of the	Lattice Binding Energy			2	-			
C - XY Longitudinal Depth vs. Y-Axis D	1 1				-			
+ 24.7 um - Depth vs. Y-Axis	🕄 XY Longitudinal	S XY Longitudinal						
Depth vs. Y-Axis 90	+ 24.7 um							
90 -24.7 um 1.95 mm - Target Depth - 2.00 mm 2 H (3000) into Layer 1+he (2 layers, 2 atoms) 1 Layer 1 7500 2 he 2000000 3 -	- Dept	h vs. Y-	Axis 🚽					
90 	1		2 C.	1.1	1.1			
200	1			 A second sec second second sec	1.1			
00 -24.7 um 1.95 mm - Target Depth - 2 M (3000) into Layer 1 + he (2 layers, 2 atoms) 1 Layer 1 7500 2 he 2000000 2 he 2000000 2 he 2000000 1 Layer 1 7500 2 he 2000000 9.00000 1 - Depth vs. Y-Axis 00 - - - - - - - - - 00 - - - - - - - - - - - - - - - - -			in the second	ana di	- 172			
20 		Sector De		n an an an Sea Chean an Alban	100			
200 -24.7 um 1.95 mm - Target Depth - 2.00 mm ? H (3000) into Layer 1 + he (2 layers, 2 atoms) 1 Layer Name Width (A) Density 1 Layer 1 7500 2,702 1 Layer 1 7500 2,702 2 he 2000000 0,000179 2 he 2000000 0,000179 2 he 2000000 0,000179 4 Congitudinal Congitudinal -25.0 um Depth vs. Y-Axis -00 -250 um 200 mm	hard a charlabele	Sec. March	 All subjects 					
90 	A. S. S. Start and Starting and	10.30.920	1 Station & State		6.5			
	-00	4. 10. 1.						
			distant.	Restriction				
	2015年1月1日日日日日日日日 日日日日日日日日日日日日日日日日日日日日日日日日日日日	13,349,61		1.1.1.1.1.1	劉			
	 The second s		1. a					
	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	entra de la composition de la composition de la composition	Sec. Name	er de la décembra de la deserva de la des	10			
	and the second second	1990 - Ali			1.94			
- <u>-24.7 um</u> 1.95 mm - Target Depth - 2.00 mm ? H (3000) into Layer 1 + he (2 layers, 2 atoms) Layer Name Width (A) Density AI (26,982 He (1 Layer 1 7500 2.702 1,00000 0 2 he 2000000 0,000179 0,00000 1 Lattice Binding Energy 3 C: XY Longitudinal + 25.0 um Depth vs. Y-Axis -00 	1	1.00		e de tres est	- T			
-24.7 um 1.95 mm - Target Depth - 2.00 mm ? H (3000) into Layer 1 + he (2 layers, 2 atoms) Layer Name Width (A) Density AI (26,982 He (1 atoms)) 1 Layer 1 7500 2,702 1,00000 2 he 2000000 0,000179 0,00000 1 Lattice Binding Energy 3 3 3 * XY Longitudinal Image: State St	-							
1.95 mm - Target Depth - 2.00 mm ? H (3000) into Layer 1 + he (2 layers, 2 atoms) Layer Name Width (A) Density Al (26,982 He [1 Layer 1 7500 2.702 1,00000 2 he 2000000 0,000179 0,00000 1 Lattice Binding Energy 3 3 3 * Y Longitudinal Image: Structure Structure * Depth vs. Y-Axis Structure Structure * 00 Structure Structure Structure * - - - - * - - - - * - - - - * - - - - * - - - - * - - - - * - - - - * - - - - * - - - - * - <td< th=""><th>-24.7 um</th><th></th><th></th><th></th><th></th></td<>	-24.7 um							
? H (3000) into Layer 1+he (2 layers, 2 atoms) Layer Name Width (A) Density Al (26,982 He (200000 0,000179 0,0000 0) 2 he 2000000 0,000179 0,00000 0) Lattice Binding Energy 3 * Y Longitudinal • Depth vs. Y-Axis • 00 • -	1.95 mm 1	Farget Depth		2.00	mm			
Interview Layer Name Width (A) Density AI (26,982) He (21,0000) Interview Interview </th <th colspan="8">1.95 mm Target Depth 2.00 mm</th>	1.95 mm Target Depth 2.00 mm							
Layer Name Width (A) Density AI (26,982) He (1) 1 Layer 1 7500 2,702 1,00000 0 2 he 20000000 0,000179 0,00000 1 Lattice Binding Energy 3 3 3 3 * - - - - - * Depth vs. Y-Axis - - - - • Depth vs. Y-Axis - - - - - • 00 -	2 H (2000) into Lav	or 1+bo	(2 lovor	2 2 atom	001			
1 Layer 1 7500 2,702 1,00000 0 2 he 20000000 0,000179 0,00000 1 Lattice Binding Energy 3 3 3 3 *	? H (3000) into Lay	er 1+he	(2 layers	5, 2 aton	ns)			
2 he 2000000 0,000179 0,00000 1 Lattice Binding Energy 3 5 XY Longitudinal 2 Depth vs. Y-Axis 00 00 	PH (3000) into Lay	er 1+he Width (A)	(2 layers	6, 2 aton AI (26,982	NS) He(
Lattice Binding Energy 3 S: XY Longitudinal Image: State Stat	? H (3000) into Lay Layer Name 1 Layer 1	er 1+he Width (A) 7500	(2 layers Density 2,702	5, 2 aton AI (26,982 1,00000	ns) <u>He (</u>			
CS- XY Longitudinal CS- XY Longitudinal Depth vs. Y-Axis O	PH (3000) into Lay Layer Name 1 Layer 1 2 he	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000	NS) He(
S> XY Longitudinal Depth vs. Y-Axis O	P H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000 3	NS) He (
+ 25.0 um - Depth vs. Y-Axis 00 	P H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000 3	NS)			
+ 25.0 um Depth vs. Y-Axis 00 	P H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000 3	NS)			
Depth vs. Y-Axis	P H (3000) Into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000 3	NS) He (1			
00 - <u>.25.0 um</u> 1.95 mm - Tarret Denth - 2.00 mm	P H (3000) Into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy 5 XY Longitudinal + 25.0 um	er 1+he width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,00000 0,00000 3	NS) He (1			
- <u>25.0 um</u>	P H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy S XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000	(2 layers Density 2,702 0,000179	5, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (
- <u>250 um</u>	PH (3000) Into Lay Layer Name Layer 1 Phe Lattice Binding Energy S XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (
-00 	P H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy 5 XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000 h vs. Y-	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (1			
- 00 - 25.0 um 1.95 mm - Tarret Denth - 2.00 mm	? H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy 5 XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) Hel			
00 	? H (3000) into Lay Layer Name 1 Layer 1 2 he Lattice Binding Energy 5 XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) Hel			
	PH (3000) Into Lay Layer Name Layer 1 Phe Lattice Binding Energy Phi S> XY Longitudinal + 25.0 um Dept	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,0000 3	ns) He (
	PH (3000) Into Lay Layer Name Layer 1 Phe Lattice Binding Energy T S- XY Longitudinal + 25.0 um Dept	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (
- <u>-25.0 um</u> 195 mm - Tarret Denth - 2.00 mm	P H (3000) into Lay Layer Name Layer 1 P he Lattice Binding Energy P S XY Longitudinal + 25.0 um Dept	er 1+he <u>width (A)</u> 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns)			
- <u>-25.0 um</u>	P H (3000) into Lay Layer Name Layer 1 Layer 1 Lattice Binding Energy C XY Longitudinal + 25.0 um Dept	er 1+he <u>width (A)</u> 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,0000 3	NS) He (1			
- <u>-25.0 um</u>	P H (3000) into Lay Layer Name Layer 1 P he Lattice Binding Energy P + P + P + P + P + P + P + P + P + P +	er 1+he width (A) 7500 20000000 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (1			
	P H (3000) into Lay Layer Name Layer 1 Layer 1 Layer 1 Lattice Binding Energy CS- XY Longitudinal + 25.0 um Dept 00	er 1+he width (A) 7500 20000000 h vs. Y-	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3				
-25.0 um	PH (3000) into Lay Layer Name Layer 1 Layer 1 Layer 1 Lattice Binding Energy CS- XY Longitudinal + 25.0 um Dept	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (1			
-25.0 um	P H (3000) into Lay Layer Name Layer 1 Layer 1 Layer 1 Lattice Binding Energy C XY Longitudinal + 25.0 um Dept	er 1+he width (A) 7500 20000000 th vs. Y-	(2 layers <u>Density</u> 2,702 0,000179 Axis	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He (1			
-25.0 um	P H (3000) into Lay Layer Name Layer 1 Layer 1 Layer 1 Lattice Binding Energy T S XY Longitudinal + 25.0 um Dept	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	NS)			
-25.0 um	PH (3000) into Lay Layer Name Layer 1 Layer 1 Layer 1 Lattice Binding Energy T S XY Longitudinal + 25.0 um Dept	er 1+he <u>width (A)</u> 7500 20000000 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3	ns) He			
1.95 mm Target Denth 2.00 mm	P H (3000) into Lay Layer Name Layer 1 P he Lattice Binding Energy C XY Longitudinal + 25.0 um Dept 00	er 1+he width (A) 7500 20000000 th vs. Y-	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3				
	P H (3000) into Lay Layer Name Layer 1 P he Lattice Binding Energy C XY Longitudinal + 25.0 um Dept -00	er 1+he Width (A) 7500 20000000	(2 layers Density 2,702 0,000179	s, 2 aton AI (26,982 1,0000 0,00000 3				

$100 \text{ nm } \text{Si}_3 \text{N}_4$ windows + 2 mm He

VS

750 nm Al windows + 2 mm He

Si₃N₄ windows + atmosphere (air or He) (SRIM 2008 simulations)

Ener	gy loss	$Straggling(\sigma)$		
Air	He	Air	He	
28 keV	6 keV	4 keV	1.5 keV	
40 keV	8 keV	5 keV	2 keV	
54 keV	10 keV	6 keV	2 keV	
FW	HM	FW1/100M		
Air	He	Air	He	
~6 µm	~3.5 µm	~25 µm	~14 µm	
~11 µm	~5 µm	~50 µm	~21 µm	
~18 µm	~7 µm	~74 µm	~30 µm	
	Ener Air 28 keV 40 keV 54 keV 54 keV FW Air ~6 μm ~11 μm ~18 μm	Energy lossAirHe28 keV6 keV28 keV6 keV40 keV8 keV54 keV10 keVFWHMAirFWHMAirHe~6 µm~3.5 µm~11 µm~5 µm~18 µm~7 µm	Energy lossStraggAirHeAir 28 keV 6 keV 4 keV 28 keV 6 keV 4 keV 40 keV 8 keV 5 keV 40 keV 8 keV 5 keV 54 keV 10 keV 6 keV 54 keV 10 keV 6 keV $FWHM$ $FW1/$ AirHeAir $\sim 6 \mu m$ $\sim 3.5 \mu m$ $\sim 25 \mu m$ $\sim 11 \mu m$ $\sim 5 \mu m$ $\sim 50 \mu m$ $\sim 18 \mu m$ $\sim 7 \mu m$ $\sim 74 \mu m$	

External set-up: micron resolution is a limit?

Sample contribution path lenght in the sample FW1/100M FWHM 10 µm ~0.3 µm ~1.5 µm $\sim 0.7 \ \mu m$ 20 µm $\sim 4 \ \mu m$ 30 µm ~2 µm ~8 µm $40 \ \mu m$ ~3 µm ~10 µm

(3 MeV protons in a medium Z sample (Pyrite) 3 MeV; $range = 40 \ \mu m$)

Fig. 1 (a) Zone of interest of the sample and beam spot (top view); (b) beam penetrating into the sample (cross sectional view), investigating a layer thicker than the zone of interest

External set-up: Si₃ N₄ exit windows

standard microbeam measurements:

frame: 2.6 x 2.6 mm² wide, 0.2 mm thick *membrane:* - 100 nm thick

- $-0.5 \ x \ 0.5 \ mm^2$
- $-1.0 \ x \ 1.0 \ mm^2$

• wide area samples:

frame: - 5 x 5 mm² wide, 0.2 mm thick
 membrane: - 200 nm thick
 - 2.0 x 2.0 mm²

• sub-millibeam applications:

- frame: $-7.5 \times 7.5 \text{ mm}^2$ wide, 0.2 mm thick - membrane: -500 nm thick $-2.0 \times 2.0 \text{ mm}^2$ $-3.0 \times 3.0 \text{ mm}^2$

PELCO Holey Silicon Nitride Support Films for TEM

www.tedpella.com/grids.../silicon-nitride-holey.ht...
Traduci questa pagina
Silicon nitride support films are manufactured using state-of-the-art semiconductor and
MEMS ... 1 ea Si3N4 15nm membrane with 9 ea 0.1x0.1mm windows

Silicon Nitride Windows - Norcada

www.norcada.com/products/nitride-windows-xray/ ▼ Traduci questa pagina SILICON NITRIDE MEMBRANE WINDOWS FOR MICROSCOPY ... Our silicon nitride windows have a single square or rectangular window centered on either a 200µm (NX series) thickness or 500µm (QX ... Stoichiometric Si3N4 Membranes.

SPI Silicon Nitride Membrane Window Grids for TEM - SPI ...

www.2spi.com/catalog/grids/silicon-nitride.php ▼ Traduci questa pagina The SPI Silicon Nitride Membrane Window grids from SPI Supplies are the ultimate for those working with nanoparticles and conducting in situ high temperature ...

Material: Silicon Nitride (Si3N4), film - MEMS Clearinghouse

www.memsnet.org/material/siliconnitridesi3n4film/
Traduci questa pagina
Material: Silicon Nitride (Si3N4), film ... optical measurements, value obtained by direct
measurements of composite Si3N4/SiO2 windows using load deflection ...

Silson

www.silson.com/ - Traduci questa pagina

Standard **silicon nitride** membrane **windows**. The standard range of Silson **silicon nitride** membrane **windows** consist of square **silicon nitride** membranes in ...

Silicon Nitride TEM Grids - TEMwindows.com

www.temwindows.com/category_s/22.htm
Traduci questa pagina
For examples of how these Silicon Nitride TEM windows can be used, please see
Featured Publications. Competitively Priced: state of the art manufacturing ...

PELCO® Silicon Nitride Support Films for TEM

www.woomyoung.co.kr/silicon-nitride-details.htm
Traduci questa pagina
Silicon nitride support films are manufactured using the latest, patented, ... by etching
away a window in the silicon wafer substrate underneath the Si3N4 ...

Si₃N₄ window, tem membrane, film...

So this is the end of the story: the only possible choice is the adoption of 100 nm Si_3N_4 exit windows!

ELSEVIER

Nuclear Instruments and Methods in Physics Research B 190 (2002) 271-275

www.elsevier.com/locate/nimb

JAERI Takasaki in-air micro-PIXE system for various applications

Takuro Sakai ^{a,*}, Tomihiro Kamiya ^a, Masakazu Oikawa ^a, Takahiro Sato ^b, Akira Tanaka ^b, Keizo Ishii ^b

^a Advanced Radiation Technology Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan ^b Department of Quantum Science and Energy Engineering, Tohoku University, Aramaki, Aoba, Sendai 980-8579, Japan

Abstract

In JAERI Takasaki, an in-air micro-PIXE system has been developed. This system enables multi-elemental mapping of samples in atmospheric environment with spatial resolution of 1 µm.

1 μm spatial resolution with a 4 μm Mylar window at Jaeri Takasaki

A beam exit window, which separates samples from a high vacuum beam line, is essentially required to extract scanning micro-probe. Thin organic film is an ideal material for this purpose, because it is composed by light elements and has good physical properties. A 4 μ m thick Mylar foil is mainly used for the window. The foil also plays a role of sample backing to minimize the distance between the window and samples. A sketch of the external beam apparatus for micro-PIXE is shown in Fig. 1. The window is attached on each sample holder, which is an annular disk made by acrylic resin and the tapered hole has a 1 mm diameter on the atmospheric side. Samples are set on the holders and can be observed by an optical microscope (KEYENCE VH-6300) even during irradiation. Up to six holders can be mounted on the revolving stage. A carbon coated 100 µm thick Mylar foil is attached in front of the microscope as the beam dump. The final resolution of the extracted proton beam can be kept nearly 1 μ m

Fig. 1. Cross-sectional view of an external micro-beam apparatus for micro-PIXE analysis.

Wakasa Wan external microbeam facility

Nuclear Instruments and Methods in Physics Research B 269 (2011) 2180-2183

Progress of in-air microbeam system at the Wakasa Wan Energy Research Center

K. Yasuda^{a,*}, M. Nomachi^b, Y. Sugaya^b, H. Yamamoto^c, H. Komatsu^d

^a The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga, Fukui 914-0192, Japan ^b Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan ^c Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan ^d Graduate School of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-ku, Sapporo 060-8586, Japan

ARTICLE INFO

Article history: Available online 26 February 2011

Keywords: External beam Micro-PIGE Micro-PIXE

ABSTRACT

Modifications of an in-air microbeam system at the Wakasa Wan Energy Research Center designed to improve its performance are described. In the previous setup, a silicon nitride membrane (area: $1 \times 1 \text{ mm}^2$; thickness: 100 nm) was used for the beam exit window and the distance between the window and the sample was restricted to ≥ 1.7 mm. Due to this restriction, the beam spot size obtained using the previous setup was $13 \times 13 \text{ µm}^2$. To reduce the beam spot size, the beam exit window was replaced by a silicon nitride membrane (area: 3 (horizontal) \times 2 (vertical) mm²; thickness: 200 nm). In this setup, the sample can be moved as close as 0.7 mm to the window, enabling a beam spot size of $7 \times 6 \text{ µm}^2$ to be

Wakasa Wan external microbeam facility

Wakasa Wan external microbeam facility

Since the silicon nitride membrane is much thinner than the polyimide foil, the detection efficiency of $P-K_{\alpha}$ X-rays increased from less than 0.01% to 54%.

The beam size was determined to be $x \times y = 7 \times 6 \mu m^2$ (FWHM). The present beam size is approximately two times smaller than that obtained using the previous setup.

External microbeam with glass capillary

ELSEVIER

Nuclear Instruments and Methods in Physics Research B 249 (2006) 226-229

www.elsevier.com/locate/nimb

In-air PIXE analysis by means of glass capillary optics

Takuya Nebiki, M. Hasnat Kabir, Tadashi Narusawa *

Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan

Available online 11 May 2006

Abstract

<u>A novel technique to introduce high energy ion beams to atmospheric environment is presented, which enables in-air PIXE</u> measurements. Slightly tapered glass capillary optics is applied to work as a differential pumping orifice as well as a focusing lens. The flux intensity is enhanced by at least one order of magnitude due to the focusing effect. Using capillaries of 10–20 μ m outlet diameters, we obtain several hundreds pA of 4 MeV He²⁺ ion beam and apply it to PIXE analysis of the seabed sludge without any sample treatments.

External beam with metal capillary

Nuclear Instruments and Methods in Physics Research B 269 (2011) 1023-1025

Development of two-dimensional mapping technique by in-air-PIXE with metal capillary

N. Fujita^{a,*}, K. Ishii^b, H. Ogawa^b

We have developed the two-dimensional mapping technique with in-air-PIXE (2D-PIXE) using a metal capillary as a guide to extract ion beam to air. The metal capillary is the conventional injection needle with a 200 µm inside diameter. For the target which is the character made of the copper wires on aluminum basement, 2D-PIXE measurements were performed by irradiating 3 MeV proton beam. As a result, the character was tend to be restored clearly by this method. We discuss about the result of the two-dimensional map from a viewpoint of the signal-to-noise ratio and the resolution. This technique is expected to be applicable to various fields such as biology, nano-technology, archeology and so on. © 2010 Elsevier B.V. All rights reserved.

External beam with metal capillary

Fig. 1. Schematic diagram of in-air 2D-PIXE setup.

External microbeam with metal capillary

Fig. 2. (a) Photo of the target. (b) The result of 2D-PIXE by the characteristic X-ray of Cu.

External microbeam at the AGLAE external microbeam 1 - 1998

T. Calligaro et al. | Nucl. Instr. and Meth. in Phys. Res. B 136-138 (1998) 339-343

Front view Side view $1 + \frac{1}{1} +$

Fig. 1. Simplified sketch of an exit nozzle: (1) x-y micrometric stage for positioning the beam at the center of the exit foil; (2) Exit foil; (3) Beam monitoring device via RBS; (4) Teflon insulating tube (necessary for beam monitoring).

 $0.75 \ \mu m$ thick Al foil supported by a 150 μm thick sapphire wafer with a 100 μm diameter hole. *External microbeam at the AGLAE 2 - 2000*

Fig. 1. Sketch of the last version of the exit nozzle for the production of an external beam. The overall length is 110 mm. The numbered parts are the following: (1) 0.1 μ m Si₃N₄ exit foil set at 45° with respect to the beam; (2) 0.1 μ m Si₃N₄ foil closing the detector housing; (3) Surface barrier detector set under vacuum with adjustable distance to sample; (4) Collimator system closed with a 8 μ m Kapton foil and facing the exit window to allow beam monitoring with a Si(Li) X-ray detector; (5) 3-part aluminium canal; (6) Teflon cone; (7) Brass ring holding the detector housing; (8) Stainless steel vacuum adaptor; (9) Housing of the surface barrier detector; (10) Brass canal for pumping; (11) System for adjusting the detector position; (12) Brass collimator to suppress contribution of halo to monitoring signal.

External microbeam at the AGLAE 3 - 2004

2.3.1. Beam monitoring

This is a difficult issue when operating in external beam mode, as the measurement of the integrated charge deposited on the target is no longer reliable. Several means have been reported in the literature including the use of a chopper, the Ar X-ray signal when operating in air, the RBS signal emitted by the exit window. We have used this last system in the earlier version of our set-up where a millimetre-sized beam was extracted through various windows (Kapton, Al, Ti or Zr). The shift toward the ultra-thin Si₃N₄ window made this means unfeasible because the RBS signal was too low.

Fig. 2. Close-up view of the external beam set-up. The numbered main components are: 1. low energy X-ray Si(Li) detector equipped with a deflecting magnet; 2. high energy X-ray Si(Li) detector; 3. surface barrier detector; 4. Si-drift detector cooled by Peltier effect for dose monitoring; 5. pointing laser.

the AGLAE external microbeam 4 - 2005

Fig. 1. Scheme of the new extracting nozzle.

J. Salomon et al. | Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 2273-2278

the AGLAE external microbeam 5 – 2008

Fig. 4. Layout of the nozzle with integrated SB detector. 1-Annular SB detector. 2-BNC connector. 3-Sample position. 4-Low energy Si(Li) detector with magnetic deflector. 5-Diaphragm for dose monitoring and angle of detection definition. 6-Path of backscattered particles from sample and gold monitor. 7-Extraction steel cone. Note the new components in the latest version: 8-Collimator to suppress the signal from the exit window. 9-A cold trap in the detector housing to enhance the vacuum and reduce the content in hydrocarbides.

the AGLAE external microbeam 4 – 2008

Fig. 3. The new version of the extraction nozzle which permits RBS measurement and dose monitoring, with the associated cold baffle.

the AGLAE external microbeam 5 – 2011

Fig. 1. External beam set-up used for simultaneous PIXE–RBS–PIGE. (1) Beam extraction nozzle with a Si_3N_4 window; (2) turbo-pump; (3) high energy Si(Li) X-ray detector equipped with a 6-µm Be window, solid angle 100 mSr; (4) low energy Si(Li) X-ray detector equipped with a deflection magnet, 0.25-µm BN window, He flux, solid angle 10 msr; (5) RBS detector; (6) gamma detector; (7) dose detector: SDD Peltier cooled detector; (8) camera for positioning.

the AGLAE external microbeam 6 – 2014

L. Pichon et al./Nuclear Instruments and Methods in Physics Research B 318 (2014) 27-31

maximum solid angle for high energy detectors is 4×125 msr = 500 msr.

LABEC PIXE-PIGE-BS measurements

LABEC PIXE-PIGE-BS-IL setup

PIXE analysis of the Trivulzio portrait by Antonello da Messina

scanning-PIXE: why?

photograph after the removal of the old varnish

Unusual surface with darker spots with sub-millimetre dimensions

need of <u>good spatial resolution</u> probe and an <u>imaging approach</u>, in order to correlate elemental distributions to visible details

The red mantle

 $E_n = 3 MeV$

PIXE spectra dominated by Hg and S X-ray peaks
 → cinnabar (HgS)

 Other elements presents (Al, K), not characteristic of a particular pigment

Hg: M and L lines

The Hg LOW energy X rays map shows the 'lack' of cinnabar The Hg HIGH energy X rays map does <u>not</u> show the lack of cinnabar.

This effect suggests the presence of a very thin layer over the cinnabar, sufficient to absorb the low energy X rays from Hg but practically transparent for those of higher energy.

Metal point drawings

LEONARDO DA VINCI STUDY OF A DRAPERY ROMA, ISTITUTO NAZIONALE PER LA GRAFICA metal point + lead white red prepared paper

FILIPPINO LIPPI - STUDY Firenze, Opificio delle Pietre Dure metal point + prepared paper 43

Metal-point drawings on prepared paper

- Knowledge of materials to allow restorers to deal with fragile and precious works, so far little studied from a scientific point of view
- Problem: non uniform track of the metal stylus makes material identification difficult
- Need of <u>a non-destructive</u> <u>imaging technique</u>, spatial resolution better than 100 μm

Example of challenging metal point drawings

Pb stylys on cinnabar + Pb-white prepared paper

Hg X

LAZURITE (Na and S)

PIGE Na

PIXE S

Mineral identification PIXE Ca

PIXE Mg

 $\underline{\text{DIOPSIDE}}$ (Ca e Mg)

Results - I

Conclusions

• external beams are used in many different fields of applications, such as CH, biology, earth sciences,...

• extraction window and external path are critical parameters to maintain beam quality

• Si_3N_4 membranes are the typical, although not the unique, choice for beam exit windows

• a variety of external beam set-ups has been developed so far

• advantages and limitations of these solutions are to be analyzed in order to find the best solution for the applications of interest

• external micro-beam may constitute the solution to problems where the beam induced damage is critical and high spatial resolution is required, e.g. in many CH studies

Thank you for your attention

Albrecht Dürer Study of Hands, 1508 Brush and ink, highlighted with white on blue tinted paper, 29 x 20 cm Graphische Sammlung Albertina, Vienna

giuntini@fi.infn.it