Irradiations at the INFN-LABEC facility in Florence

L. Giuntini, F. Taccetti

Dipartimento di Fisica e Astronomia, Università di Firenze
INFN Sezione di Firenze
ELectrostatic DEFlector (DEFlettore ELecttrostatico): the chopped beam line of the Tandem accelerator at INFN-LABEC
Capabilities of the DEFEL beam line

- Pulsed bunches of:
 - *Duoplasmatron*: p (and α)
 - Cs-ion sputtering source: p, Li, C, O, Si, Ti, Fe, I
- Energy:
 - 1÷6 MeV for protons;
 - 1÷few tens MeV (heavier ions)
- Bunch frequency:
 - up to ~10kHz
- Average ion multiplicity:
 - hundreds particles and more
Ions are deflected from the beam line axis for most of the time (PreDeflector). For time windows of ~ 1μs, ions are allowed to enter the main Deflector.
From a continuous to a pulsed beam

During the transition of the applied voltage, the beam spot moves transversally from a steady state B to A.
Few examples - I

10.035 MeV 12C$^{3+}$ ions

11.235 MeV O$^{3+}$ Ions

1 MeV protons

fit function $= \frac{e^{\mu k}}{k!}$

Fit Parameters

$\mu = 2.988 \pm 0.006$

$k = 398300 \pm 1300$

$\chi^2/\text{ndf} = 26.64/8$
Few examples - II

3 MeV Protons beams of different intensities
The role of the final slits S3

Aperture of slits on y axis →
- number of transmitted ions per pulse (it also depends on beam current – once voltage steps, deflector plates length and deflector-to-slits distance are fixed)
- spatial resolution

Aperture of slits on x axis →
- spatial resolution

Typically, 4-independent sectro slits (by Fischer Gmbh) →
- 30-50 μm spatial resolution
- ~50 μm uncertainty on aperture size
→ Not suitable for precision applications!
Our new slits

- Aperture formed by 4 independent blades
- 30 mm x 30 mm maximum size
- 1 μm resolution
- Designed for high vacuum applications
- Tungsten carbide blades with a 0.5° knife-edge
How to look at the beam

- Typical devices:
 - Beam profile monitor
 - Luminescent quartz
- Downstream the final slits, \textit{transmitted beam intensity too low}
- Need of a new visualisation system
The Aptina camera

- 752 x 480 pixels
- Pixel dimensions 6x6 μm
- Programmable through serial interface
- Images acquired using services added to Linux kernel

(MT9V034)
Here is the beam

Slits aperture 1mm x 400 μm
Here is the beam

Slits aperture 200 x 200 μm
Here is the beam

3 MeV protons

A new sensor (Aptina, 5M pixels, 2x2 μm pixel size) is going to be tested...
State of charge = Si$^{3+}$

Energies = 8 – 11 MeV

Probe size = 0.2 to 1 mm wide (x and y)

Implantation times ranging from 100 µs (pulsed) to 1 h (continuum)

Fluences = $\sim 10^9$ - $\sim 10^{16}$ cm$^{-2}$
Results

5.6 \times 10^{13} \text{ cm}^{-2}
1.1 \times 10^{13} \text{ cm}^{-2}
2.3 \times 10^{12} \text{ cm}^{-2}
3.7 \times 10^{11} \text{ cm}^{-2}

5 \times 5 \text{ mm}^2

6 \times 10^{14} \text{ cm}^{-2}

10^{16} \text{ cm}^{-2}

Mono-INFN

H-Al\text{max}

6 \times 10^{15} \text{ cm}^{-2}
 applications

energy losses and straggling

Characterization of detectors

Time resolved ion beam induced luminescence

- C. Czelusniak, *PhD Thesis*, ongoing
Microbeam line

Beam trajectory in horizontal plane

Beam trajectory in vertical plane
The set-up for ultra-low intensity measurements
Refractive index control

- 2 and 3 MeV proton implantation in the low damage regime
- fluences ($\Phi = 10^{13} - 10^{17} \text{ cm}^{-2}$) measured at the Florence microbeam
- refractive index variation OPD = $(n-n_0)$ of implanted diamond measured at the Florence INOA
Experimental data: OPD vs. Fluence

- linear trends
- different trends for 2 & 3 MeV implantations
Evidence of Light Guiding in Ion-Implanted Diamond

S. Lagomarsino
Department of Energetics University of Firenze and INFN, Via S.Marta 3, 50136 Italy

P. Olivero and F. Bosia
Experimental Physics Department and Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino and INFN, via P. Giuria 1, 10125 Turin, Italy

M. Vannoni
CNR, Istituto Nazionale di Ottica (INO), Largo E. Fermi 6, 50125 Arcetri, Firenze, Italy

S. Calusi, L. Giuntini, and M. Massi

Controlled variation of the refractive index in ion-damaged diamond

P. Olivero a,b,*, S. Calusi b,c, L. Giuntini c, S. Lagomarsino d, A. Lo Giudice a,b, M. Massi c, S. Sciortino d, M. Vannoni e, F. Vittone a,b
IBIC study of a CdS/CdTe solar cell

3 MeV He

lighting direction
IBIC study of a CdS/CdTe solar cell

• 3 MeV He ions

• the set-up for beam current control allowed an easy and fast intensity reduction down to 10^3 particles per second injected directly into the solar cell

• charge collection efficiency (CCE) maps show inhomogeneous response due to the polycrystalline nature of the CdTe bulk material
radiation resistance

- average pulse height decrement of 20% for fluences up to $2 \cdot 10^{10}$ alpha/cm2
- maps show non-uniform decrease of CCE: large grains with higher efficiencies more sensitive to radiation damage
Thank you for your attention!

giuntini@fi.infn.it
labec.fi.infn.it
www.infnbeniculturali.net