RADFAC Day - 26 March 2015

Modelling of Diamond Devices with TCAD Tools

<u>A. Morozzi^(1,2)</u>, D. Passeri^(1,2), L. Servoli⁽²⁾, K. Kanxheri⁽²⁾, S. Lagomarsino⁽³⁾, S. Sciortino⁽³⁾

(1) Engineering Department - University of Perugia, Italy
(2) Istituto Nazionale Fisica Nucleare - Perugia Section, Italy
(3) Istituto Nazionale Fisica Nucleare - Florence Section, Italy

- ✓ Introduction: Motivation and Aim.
- ✓ Device-level Numerical Simulation with TCAD: Settings.
- ✓ Physical Characterization of Diamond
- Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
- ✓ Silicon on Diamond Device
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

- ✓ Introduction: Motivation and Aim.
- ✓ Device-level Numerical Simulation with TCAD: Settings.
- ✓ Physical Characterization of Diamond
- ✓ Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
- ✓ Silicon on Diamond
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

Motivation and Aim

	Silicon	Diamond	
Bandgap [eV]	1,12	5,47	high field operation
Breakdown Field [MV/cm]	0,4	20	
Intrinsic Resistivity @ R. T. [Ω cm]	2,3x10 ⁵	> 10 ¹¹	
Intrinsic Carrier Density [cm ⁻³]	1,5x10 ¹⁰	10 ⁻²⁷	Low leakage current
Dielectric Constant	11,9	5,7	
Electron Mobility	1350	1900-3800	
Hole Mobility	480	2300-4500	– fast signal
Saturation Velocity	1x10 ⁷	2,7x10 ⁷	
Displacement Energy [eV/atom]	13-20	43	radiation hardness
Thermal Condutivity [W cm ⁻¹ K ⁻¹]	1,5	20	heat dissipation
Energy to create e-h pair [eV]	3,62	11,6 - 16	Also problems → small dimensions; high cost;
Radiation Length [cm]	9,36	12,2	
Energy Loss for MIPs [MeV/cm]	3,21	4,69	
Aver. Signal Created / 100 µm	8892	3602	low signal

Motivation and Aim (1)

- ✓ Goal: development of numerical methods and methodologies in order to simulate, at device-level, the steady-state and time-variant analysis of a Diamond and Silicon on Diamond device.
- \checkmark The design of the set-up is a critical issue in a TCAD simulation
 - ✓ Robust and reusable simulation set-up.
 - Wrong choices on spatial and time domain discretization or methodologies, lead to wrong results.
- ✓ Diamond is a novel material in electronic applications
 - → is not included in the material library of the state-of-the-art TCAD software.
 - \rightarrow diamond added by-hand in the TCAD material's library
 - → No fitting parameters of existing insulator/semiconductor materials.

✓ Introduction: Motivation and Aim.

✓ Device-level Numerical Simulation with TCAD: Settings.

- ✓ Physical Characterization of Diamond
- ✓ Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
- ✓ Silicon on Diamond
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

Technology Computer-Aided Design (TCAD)

 \checkmark Device simulation tools simulate the electrical characteristics of semiconductor devices, as a response to external electrical, thermal or optical boundary conditions imposed on the structure.

$$\nabla \cdot \left(-\varepsilon_{s} \nabla \varphi\right) = q \left(N_{D}^{+} - N_{A}^{-} + p - n\right)$$
$$\frac{\partial n}{\partial t} - \frac{1}{q} \nabla \cdot \vec{J}_{n} = G - R$$
$$\frac{\partial p}{\partial t} + \frac{1}{q} \nabla \cdot \vec{J}_{p} = G - R$$

Physical Characterization of Diamond

Material = "Diamond"

- ✓ Introduction: Motivation and Aim.
- ✓ Device-level Numerical Simulation with TCAD: Settings.
- ✓ Physical Characterization of Diamond
- Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
- ✓ Silicon on Diamond
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

Setting the simulation domain: 2D vs 3D approach

Actual device

Simulated Structure

Setting the simulation domain: 2D vs 3D approach (1)

t = 10 ps

t = 20 ps

t = 5 ps

t = 0 ps

Setting the simulation domain: 2D vs 3D approach (1)

Charge Generation Shape

- ✓ Introduction: Motivation and Aim.
- ✓ Device-level Numerical Simulation with TCAD: Settings.
- ✓ Physical Characterization of Diamond
- ✓ Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
- ✓ Silicon on Diamond
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

Single-Crystal CVD diamond

Intrinsic Diamond

Ionized acceptor concentration versus dopant concentration in boron doped sCVD diamond at 300K

Hole mobility versus dopant concentration in boron doped sCVD diamond at 300K

[Rashid et al., Numerical Parametrization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis, IEEE Trans Electr. Dev., vol 55, October 2008]

Intrinsic Concentration Issue

Diamond has a large Bandgap (5.47 eV) \rightarrow n_i= 10⁻²⁷ cm⁻³ at 300K

This concentration is too low for the numerical analyses with TCAD

Possible strategies to fit the experimental data:

- $n_i = ? \text{ cm}^{-3} [1][2][3]$
- Constant Carrier Generation (bulk)
- Trap Levels
- [1] Rashid et al., Numerical Parametrization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis, IEEE Trans Electr. Dev., vol 55, October 2008
- [2] Rahid et al, Modelling of single-crystal diamond Schottky diodes for high-voltage applications, Diamond and Rel. Materials, 15 (2006) 317-323
- [3] M. Brezeanu et al., Single crystal diamond M-i-P diodes power electronics, let Circuits Devices Syst., 2007, 1, (5), pp. 380-386

DC Analyses: Effect of Doping

DC and TV Analyses: Constant Carrier Generation Effect

DC and TV Analyses: Constant Carrier Generation Effect

Istituto Nazionale di Fisica Nucleare

Trapping and Recombination Centers in pCVD

A model of electronic transport in polycrystalline (pCVD) has been included in the simulation, accounting for two distributions of defect levels: a mid-gap group of recombination centers (Band A) and a distribution of traps closer to one of the band edges (Band B).

DC: Single Trap vs Position

Strong effect of the position of Trapping and Recombination Centers within the Bandgap

Band Gap Model

A=Acceptor B=Donor

TV Analyses Results

Charge Collection of the simplified model compared with experimental results of a diamond with planar TiAu contacts

INFN Istituto Nazionale di Fisica Nucleare

- ✓ Introduction: Motivation and Aim.
- ✓ Device-level Numerical Simulation with TCAD: Settings.
- ✓ Physical Characterization of Diamond
- ✓ Design and development of the proper simulation methods and methodologies
 - ✓ 2D vs 3D approach
 - ✓ Charge Generation Shape
 - ✓ Time discretization
- ✓ Simulation Results (Steady-State and Transient Results)
 - ✓ Doping dependence
 - ✓ Constant Carrier Generation
 - ✓ Traps
 - ✓ Load effect
- ✓ Silicon on Diamond
 - ✓ Effect of the interface
- ✓ Conclusions and Future works

Silicon on Diamond (SoD)

Goal: connect a full CMOS readout chip to a diamond substrate to obtain a device for charged particle detection.

SoD: Heavy Ion Generation

SoD: Effect of the Interface

Electric Field distribution

SoD: Effect of the Interface

Electrostatic Potential

SoD: Transient Analyses

Charge Collected through the different interfaces

Conclusions

- Technology CAD (TCAD) tools customization for the study of diamond and silicon on diamond structures (models and methodologies).
- Development of an accurate and physically based model of diamond to predict the DC and TV behavior ✓ Intrinsic + ConstantCarrierGeneration for scCVD
 - ✓ Intrinsic + ConstantCarrierGeneration + Traps for pcCVD
- ✓ The proposed TCAD modeling scheme is a suitable way to reproduce the behavior of real devices and can be used as predictive tool for the optimization of:
 - **SoD** devices
 - **3D** detectors Thank you for your kind attention!!!

- The SoD interface has to be deeply studied, in order to comprehend the method to reproduce a realistic interface efficiency.

