

Radiation Hardness Study on Double Sided 3D Sensors after Proton and Neutron Irradiation up to HL-LHC Fluencies

D M S Sultan¹, G.-F. Dalla Betta¹, R. Mendicino¹, M. Boscardin²

¹ University of Trento and INFN, Italy ² Fondazione Bruno Kessler (FBK), Italy

RADFAC Thematic Day '15

INFN Laboratori Nazionali di Legnaro (Padova)

OUTLINE

- Introduction & Motivation
- Results from the electrical characterizations:
 - Passing-Through Columns (IBL technology)
 - Modified Non-Passing-Through Columns
- Comparative Investigations

Conclusion

RADFAC '15, 26/03/2015

3D Radiation Sensors

Introduction

S. Parker et. al. NIMA 395 (1997) 328

C. Kenney et. al. IEEE TNS 48(6) (2001) 2405

ADVANTAGES:

- Electrode distance and active substrate thickness decoupled:
 - Low depletion voltage (~10 V, before irradiation)
 - Fast response times
 - smaller trapping probability after irradiation

 \rightarrow High radiation hardness

- Cell Shielding Effect
- Active Edge and Slim-Edge Technology
 - \rightarrow Sensitivity up to few μ m from the edge

DISADVANTAGES:

- Non uniform spatial response
- Higher capacitance with respect to planar
- Complicated technology (wafer bonding, DRIE, etc.)

C. Kenney et. al. IEEE TNS 46(4) (1999) 1224

- Support wafer is not used \implies reduced process complexity
- First Joint Production of 3D pixels accomplished for ATLAS IBL (FBK & CNM)
- Back-side accessible -> Easier assembly within a detector system
- Active edge not feasible \rightarrow Slim edge

FBK 3D Pixels for ATLAS IBL

RADFAC '15, 26/03/2015

Electrical tests

Charge collection in FE-I4 pixels with ⁹⁰Sr beta source

ToT (MPV)

RADFAC '15, 26/03/2015

Breakdown voltage in FBK sensors

- In FBK 3D sensors the intrinsic breakdown occurs at the n⁺/p-spray junctions
- P-spray doping reduction improved V_{bd} from ~20 V (ATLAS08) to >60 V (IBL production, A09-II)

D M S SULTAN

 For further improvements, it is important to learn more about breakdown behavior

p-spray

p-spray

p⁺ col.

n⁺ col.

RADFAC '15, 26/03/2015

Field-Plate Effect on Electric field

M. Povoli et al, NIMA 699 (2013) 22-26

- Comparable electric field peaks on front side and back side for std. structures
- The field-plate helps in redistributing and lowering the E-field on the front side (breakdown on the back side ...)

Improved design

M. Povoli et al, NIMA 699 (2013) 22-26

Dalla Betta et al, (NSS/MIC), 2013 IEEE

RADFAC '15, 26/03/2015

Is it also better after irradiation ?

Since breakdown voltage improves with ionizing dose (higher oxide charge), the same improvement should be observed after irradiation

Dedicated irradiation tests were performed to check this point

a) 800 MeV protons at LANSCE facility

- Thanks to Martin Hoeferkamp and Sally Seidel
- b) TRIGA reactor neutrons at JSI Ljubljana, Slovenia
 - Thanks to Vladimir Cindro

- Different shapes, sizes and column configurations
- Different distances between n+ and p+ regions
- With and without field-plate (Passing Through Col. 3D Si Sensors)

& Only with field plate (Non Passing Through Col. 3D Si Sensors)

RADFAC '15, 26/03/2015

IBL 3D Passing-Through Sensor with Proton Irrad.

V_{bd} has shown to be dependent of Layout Diversity, Field-plate inclusion and Irrad. fluencies.

Field-plate improves to have Greater Breakdown Voltage.

High fluencies evidently improves the breakdown voltage

Field-plate has maintained on all Modified IBL process and next generation

IBL 3D Passing-Through Sensor with Proton Irrad.

C-V of Different Structures @ Different Proton Irrad. Fluencies [-10°C]

Depletion Voltage increases around 100 V for proton irradiation fluencies up to $2 \times 10^{15} n_{eq} / cm^2$

IBL 3D Passing-Through Sensor with Neutron Irrad.

- Breakdown voltage dependance upon different neutron irrad. fluencies has addressed
- Leakage current increases with higher fluencies
- Smooth increase of breakdown voltage shows quite good agreement with expectation (low gamma ray background

→ Lower Surface Damage)

Lower breakdown achieved here in comparison to the effect from Proton irrad. anticipates the contribution from bulk damage mostly!

IBL 3D Passing-Through Sensor with Neutron Irrad.

C-V characteristics of FEI4 for Neutron Irradiation

3D Non Passing-Through Sensor with Proton

I-V of FEI4 @ Different Proton Irrad. Fluencies [-10°C]

3D Non Passing-Through Sensor with Proton

RADFAC '15, 26/03/2015

- Full depletion voltage shifts at higher voltage with the appliance of higher irrad. Dose.
- For the fluence, $5e^{15} n_{eq}/cm^2$, it is evedent that Full depletion voltage shifts to >~100V \rightarrow Bias Operation range becomes limited at higher fluencies
- At more LH-HLC fluence, this effect would appear more adversely.

Comparative Investigations

Conclusion

- The extended electrical characterization of IBL and modified 3D-DDTC sensors of FBK 4-inch tech. has been shown up to large fluencies
- The critical analysis of IBL 3D batches limitation regarding V_{bd} has been addressed
- Ongoing limitation of Modified IBL 3D batches has pointed to n-column tip effect
- Modified technology showed promising candidate for complying the radiation hardness of foreseen HL-LHC
- Charge collection efficiency within new non-passing through technology yet to be investigated.

Thank You for Paying Your Attention!

Backup Slides

100

10

1

Currents [nA]

(a) FE-I4 FP

(c) 80 μ m pitch

Impact Ionization effect (@ Pre-Irrad. Condition) on leakage current was widely seen on Passing Through Col. 3D Sensors at lower temperature

Jiaguo Zhang, PhD Thesis, University of Hamburg, 2013

RADFAC '15, 26/03/2015

Selected simulation results - FE-4 diode ($V_B = -35V$)

1D slices

(front)

30 40 X [um]

30 4 X [um]

40

p-spray

50 60

50 60

FRONT (Z=0.01um) MIDDLE (Z=115um) BACK (Z=229.99um

P+ col

Vb=-35V

FRONT (Z=0.01um) MIDDLE (Z=115um) BACK (Z=229.99um)

Vb=-35V

P+ col

Electric Field distribution

- High field at the N^+ /p-spray junction on the front side (2.65e5 V/cm)
- High field at the N^+ column/p-spray junction on the back side (2.48e5 V/cm)
- E-field also increases under the front side metal (vertical and horizontal metal connections)

Electrostatic potential

- P^+ column brings the bias voltage directly on the front side p-spray
- Back side p-spray is also biased at high voltage ►

RADFAC '15, 26/03/2015

Selected simulation results - FE-4 FP diode ($V_B = -35V$)

≻

≻ 40

50

60

Ń

P+ diff.

20

-2.1E+01

-2.8E+01

-3.6E+01

60

40 X [um]

Elec. Potential

1D slices

Electric Field distribution

- High field at the N^+ /p-spray junction on the front side (2.11e5 V/cm)
- High field at the N^+ column/p-spray junction on the back side (2.53e5 V/cm)
- The field-plate helps in redistributing and lowering the E-field on the front side

Electrostatic potential

80

- The field-plate helps depleting part of the p-spray close to the N^+ diffusion
- The potential of the p-spray now drops on a wider region
- Higher breakdown voltage (breakdown probably occurs on the back side)

RADFAC '15, 26/03/2015

S. Parker et al. NIMA395 (1997) 328

3D structure implies null field points in between columnar electrodes of the same doping type

Carriers generated at null field points first have to diffuse before drifting, thus delaying signals

This can be improved with trenched electrodes, but at the expense of higher capacitance and reduced geometrical efficiency