Luminometer layout studies and constraints on the IR

FCC-ee/TLEP Physics Workshop February 4th 2015

Mogens Dam Niels Bohr Institute

• Luminosity determined via $L = \frac{N_{\text{Bhabha}}}{\sigma_{\text{Bhabha}}}$

Cross section for Bhabha scattering e+e- -> e+e- at small angles

$$\sigma_{\rm Bhabha} = \frac{1040 \,\mathrm{nb}\,\,\mathrm{GeV}^2}{s} \left(\frac{1}{\theta_{\rm min}^2} - \frac{1}{\theta_{\rm max}^2}\right)$$

• Strongly forward peaked: Requires a small and very precisely known value of θ_{min}

Measured with set of two detectors, one at each side of IP

 Covering a precisely defined angular range around the outgoing electron (A side) and positron (B side) beams

★ To eliminate first order dependence on beam parameters, need tight and looser fiducial volume:

acceptance = tightA ∩ looseB + tightB ∩ looseA

- Fiducial volume must allow for shower containment:
 - difference between $\theta_{\min,loose}$ and $\theta_{\min,detector}$ of the order of 1 Molière radius (1 cm)
- * Difference between $\theta_{min,tight}$ and $\theta_{min,loose}$ determined by expected excursions of beam parameter values from nominal
 - ✤ IP position z & (x,y), tilt of beam line

IR layout

This is probably an outdated figure, but it gives the idea

Compensation solenoid.

✦ Yesterday we saw a figure (Telnov) where it had shrunk to half of this length

Back-of-envelope study

The current study is based on the following assumptions:

- 1. Distance between IP and focussing quadrupoles: $L^* = 2.0$ m;
- 2. Beam crossing angle: 30 mrad;
- Probably conservative 3. Closest approach of luminosity calorimeter material to center of beam line: 40 mm;
- 4. Maximum scattering angle of luminosity calorimeter acceptance: 140 mrad ($\sim 8^{\circ}$);
- Tight fiducial region starts 25 mm from calorimeter edge (Moliere radius: $\sim 15 \text{ mm}$); 5.
- Luminosity calorimeter depth: 20 cm; Could probably do with 12-14 cm [X₀ = 0.34 cm] 6.
- 7. Centre–of–mass energy: 91.2 GeV.
- 8. Need space between luminosity calorimeter and quadrupole for machine equipment: Study three scenarios where calorimeter face is at z=1.0 m, 1.3 m, and 1.5 m, respectively;

What the luminosity monitor has to do

1. provide high statistics relative normalization for the machine adjustment and fast feedback 100nb of cross-section leads to 0.3% precision in one second. probably easier to

2. provide relative normalisation for the points on the Z line shape for m_z and Γ_z measurements.

→ peak cross-section for visible Z decays is ~30 nb → . $\theta_{min, tight} < 50 mrad$

- 3. need very precise cross-section measurements for absolute cross-section determinations.
 - e.g. the measurement of Z peak cross-section (10¹² Z) WW pair cross-section (10⁷ events) ZH cross-section (10⁶ events) ttbar (10⁶ events)

compare to theoretical precision of (now 6 10⁻⁴ hope 2 10⁻⁴) aim 10⁻⁴ on cross-section THIS might be easier for a larger angle detector.

Centring fiducial volume around outgoing beams

- Luminosoty calorimeters centred in global coordinate system. Fiducial volume centred on outgoing beam.
 - Probably an unlikely scenario

Centring calorimeter bodies on outgoing beams

Will shadow asymmetrically on forward ECAL in global coordinate system by +/-I5 mrad

Extreme precisions needed to reach 10⁻⁴

Shift in parameter for a shift of $+10^{-4}$ in acceptance

z_{front}	r_{\min}	$r_{\rm max}$	$ heta_{\min}$	$\theta_{ m max}$	σ	$\delta z_{ m front}$	δr_{\min}	$\delta r_{\rm max}$
[mm]	[mm]	[mm]	[mrad]	[mrad]	[nb]	$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$
1000	80	115	80	115	10	50	-2.1	6.1
1300	89	157	68	121	18	65	-3.0	17
1500	95	185	63	123	23	75	-3.5	26

2240 77 127 31.6 56.5 86 123 -2.5 11

As comparison: OPAL

- Opal achieved:
 - $\delta_{min} = \delta_{max} = 4.4 \ \mu m$
 - $\delta z_{\text{front}} = 50 \ \mu \text{m}$
 - + For a total lumi-uncertainty of 3.4×10^{-4}

Go to higher angles?

Try some Forward ECAL numbers

Assume Forward ECAL at 3 m

$z_{\rm front}$	r_{\min}	$r_{\rm max}$	$ heta_{\min}$	$ heta_{ m max}$	σ	$\delta z_{ m front}$	δr_{\min}	$\delta r_{\rm max}$
[mm]	[mm]	[mm]	[mrad]	[mrad]	[nb]	$[\mu m]$	$[\mu \mathrm{m}]$	$[\mu m]$
1000	80	115	80	115	10	50	-2.1	6.1
1300	89	157	68	121	18	65	-3.0	17
1500	95	185	63	123	23	75	-3.5	26
3000	453	928	150	300	4.2	150	-17.0	139

Yes, clearly tolerances are more relaxed...

But

★ Is it obvious that it is easier to control inner radius of FECAL to 17 µm than that of a dedicated small detector to 3 µm?

✦ Same question for z.

- * OPAL used precise fiducial marks on beam pipe. Distance to FECAL large.
- And what about material in front of calorimeter:
 - Tracking where does it start?
 - Cables: Services for vertex detector

Should not forget Z contribution to Bhabha

Interference term sizeable at FECAL-like angles: 5-10%

- How well is this under control ?
- Cross section varies substantially over short range:
 - * Radiative return to the - $\Gamma/2$ "peak" ...

What are our friends doing - SiD

"Our goal is to measure the luminosity normalisation with an accuracy of several 10^{-4} for sqrt(s) = 0.5 TeV."

Conclusions

- LEP demonstrated that it is possible to control systematic uncertainty to few 10⁻⁴
 - Extremely precisely constructed and monitored calorimeters at small angles
- Situation at TLEP somewhat more challenging
 - ✦ Main challenge: Monitors being pushed closer to IP due to machine constraints.
 - Smaller challenge: Crossing angle
- Not obvious (to me, at least) that one can obtain higher absolute precision at larger angles
 - ✦ Larger devices; obstructing material; Z contribution
- Try as hard as we can not to make the small angle solution impossible.
 - + Essentially, do not push machine elements too far into the detector region.

Parameters to be defined

- I. Minimum space needed towards IP for quads and other beamline elements
- 2. Beam crossing angle
 - Is it 30 mrad (or II mrad)
- 3. Safe beam pipe envelope
 - + How close can we approach the beamline at z values around 1.5 m