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The ILC

A reminder: The ILC

Electron Positron collisions, 500 ( to 1 TeV
Superconducting linac

Pulsed operation: /
* Bunch trains, 1 ms long, bunches every 450ns, inter-bunch 250ms

e Highly focussed flat beams:
* High luminosity 0.1-1 1034 cms!

» Strong beamstrahlung (20-30 TeV/ interaction) \
Mature design, strong synergy with XFEL at DESY Very particular background
Luminosity values conservative
Parameters designed towards AC power budget: 129 MW @250, 163MW@500GeV

Very relaxed conditions
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The Science at the ILC: |

Energy Reaction Physics Goal
91 GeV e*e‘ — 7 ultra-precision electroweak
160 GeV e” — WW ultra-precision W mass

200 GeV t’+€_ — Zh

precision Higgs couplings

350400 GeV ete” —tt

top quark mass and couplings

ete” - WW precision IV couplings
ete” — vwh precision Higgs couplings
500 GeV ete” — ff precision search for Z'
ete™ — tth Higgs coupling to top
ete™ — Zhh Higgs self-coupling
ete” — \\ search for supersymmetry

ete” — AH HTH-

search for extended Higgs states

700-1000 GeV eTe” — vThh
ete” = V'V
ete” — vt

ete™ — tt*

Higgs self-coupling
composite Higgs sector
composite Higos and top
search for supersymmetry
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Comprehensive program
to study the Higgs boson
as precisely as

possible
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The Science of the ILC: Il

Standard Model Particles
ol (W, Z, top..) are powerful probes of new physics.

P/LHC: today
m, = 0.6 GeV, 8M,, = 5 MeV
ILC" om, = 20.1 GeV, oM, = 2.3 MeV

ILC will improve the reach significantly
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Experimentation at the ILC

Precision: Hermeticity: Inclusiveness:

* \ertexing * No cracks * No HW trigger

* Tracking * Coverage to small angles * No selective sensitivity
e calorimetry




ILC conditions

Linear Collider: gp’rlmum 'got'rﬂ beams

¥

y

e single pass v
* Flat beams, highly focused "

5 nm

Beamstrahlung is a major source of backgrounds

Event display for a tt event
in ILD with beam beam
background superimposed.
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The ILD Detector

Return Yoke

ETD

Coll

Forward components
(QDO0 magnet — FCals)

SET

HCal

ECal
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Large magnetic Volume (3.5 T)
* \ertex Detector

e Silicon Tracking

 Time Projection Chamber
* Particle Flow Calorimetry

International group

* Participation from some 60 groups

e Strong contributions from Europe
and Japan
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FCAL

ILD: inner detector

ECAL

IP

r=

—

High precision vertex, at low radius
* Driven by beamstrahlungsbackground
* The lower the better

Combined Silicon with gaseous tracking
* High precision
* LlLarge
redundancy
* Excellent,
stable pattern
recognition
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Vertex Detector

LHC ILC Comment
Radiation >10'% NEQ (neutron | 10"°NEQ/cm?/yr ~0(10°) difference
Level equivalent)/cm? FPCCD not a
(3ab") solution at LHC
FID-1
Dartrdlinnm chall —_— a
e
Smm
Beam pipe
T e e S ] \ L
> .
/ N spatial resolution | FPC: 9mm wi_drh X lOKsiFIe +
BN |/ I . Y L 17mm width x 28/side
oL y 143 =| 1> (50um Kapton + 9um Cu)
146 , 164'6;.17_.5‘
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10_3...I 1l 0 1 PR RS A |
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Time Projection Chamber

* 220 space points
* Resolution <100um (60 um asymptotic) in r-®
* Resolution “Y1Imminz
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Powerful, stable basis for pattern recognition and track reconstruction.
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Time Projection Chamber

* 220 space points
* Resolution <100um (60 um asymptotic) in r-®
e Resolution Y1Imm inz

(] i | T T T | T T T | T T T | T T T

05 _:_ — SET " _f
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Material ]
budget E
ILD Detector .
0

0/ degrees

Powerful, stable basis for pattern recognition and track reconstruction.
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Tracking System

Hybrid tracking system: inner Silicon, large volume TPC, outer Silicon

10
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4

SiD like tracking system in ILD
ILD tracking system

10" |
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Particle Flow

Particle flow is the method of choice for high precision experiments
at the ILC.

Requires significantly different calorimeters than previous experiments.

4
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Ejer=Errack *E, * E,

Complex final states (e.g. W/ 2) _

__CMS, fLdt=50fb", (s=7TeV
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Particle Flow

Complex final states (e.g. W/ Z)

Energy resolution Confusion
Traditional approach Particle Flow approach
600 [
400 |
200 r 10 .'I T 1 I LI 1 | LI 1 I LI 1 I LI 1
| 1t — Particle Flow (ILD+PandoraPFA)
. L e Particle Flow (confusion term)
.200 [ 8 [T &y - Calorimeter Only (ILD)
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Jet-jet mass resolution E; -
e 4

Particle flow is better
than pure calorimetry

At high energies the

advantage is less. ob———tv e b
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Optimizing a particle flow Calo
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ECAL Cell Size/cm nLayers

Simulated tau decay
in the ILD detector

Jet energy resolution as a function JER as a function of the number
of the ECAL cell size. of layers in the ECAL (equal thickness)

Small cell size is favored, longitudinal sampling important at low energy



Silicon based Calorimetry

* Sampling calorimeters with silicon based sensitive planes are an attractive
option.

* Large progress over the last years in hardware and in understanding

* CALICE: convincing test beam results to demonstrate the feasibility

* Challenge:
~ 9 x/ndf  28.48/33 * Integration
2 CALICE 2006 data stochastic  16.69 +0.1253 . Costs!
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Scintillator Based Calorimeter

Mirror

Availablity of SiPM allows highly granular
scintillator based designs

HCAL: 3x3cm? segmentation of 3mm thick scintillator
read out by SiPM through wavelength shifting fiber
(Elimination of WLS under study)

Software compensation (e/p ~1.2) technique was show
to work well through beam tests: 58%/EY2 - 45%/E/2
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Digital Calorimetry

Digital calorimetry: Test beam results from a
« Measure the energy of a particle through the large prototype detector
numberOfce||Shit —lII'I[II'I[IlIil][[I]|II'I[Ill[l]lll'l[ill[ll'l[lll-l—
«  Was tried already in the 80" s (unsuccessfully), % 90 =
has seen a renaissance lately due to the 2 305— A3
availability of very granular systems. UF = _ L
»  Variant is semi-digital aproach 7o) SDHCAL multi-threshold mode - =
60 o =
500 @ N
40F- » =
ASIC (HARDROC) = y .
PCB 30 - =
Pads (copper, 1 cm2) - & -
Insulation (Mylar) 20 I 4 —
Anode resistive coating - o -
GND Glass plate (0.7 mm) = =
a oo 10E g* CALICE PRELIMINARY =
\ Chamberwall(1'2mm) T_ﬁ'lljl||J1|||l|]1t|1|||J1|||1|J|||Jll||l|11t|l|;
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HCAL optimization

Experimental study:
Look into particle separation

0.055
_ Absorber thickness
S 0050177—0—45G9Vjets
5 [ PFlow validation—7 g Tt lonGevien
c 1 ) * P - A4 0.045. —i— 180 GeV jets
% /;/* i 1; ] W i —— 250 GeV jets L//I
g 08¢ e 7 ’%0.040_ //i/ -
= ] L F 1
2 - : 20035: V‘/i P
i ’ : 3 s
3 06 - ) 0 : i . e
> ¥ l 0.080_ | T
EM- ] 3 4 5 6 7 8 9 10
L 10-GeV track 30-GeV track _ . .
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g 027 = LHEp =+= LHEP ] _ _ _
QGSP BERT QGSP BERT | Study of Pflow resolutions vs sampling fraction

L 111 ‘ L 111 | 1 111 | 1 111 | L 111 ‘ 1111 ‘ 1 |
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Distance between shower axes [mm]

JINST 6, PO7005 (2011) Current design seems adequate, but much more

Based on 3x3 cm? cells, scintillator work is needed.
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Forward calorimeters

e LumiCal

— Precise (<10-3) luminosity measurement
«  BeamCal

— Better hermeticity

— Bunch-by-bunch luminosity and other
beam parameter measurements (~10%)

- LHCAL

— Better hermeticity for hadrons LumiCal

| Technology

LumiCal W-Si 31 —-77 mrad
LHCAL W-Si
BeamCal W-GaAs / Diamond 5-40 mrad

TICD DCIIIING £/0/4V10



Power Management

Time structure of the ILC allows for power pulsing:

Switch off power in between trains

Combine this with advanced powering
concepts to reduce the material.

Serial powering AC_PIX_V8 A: 2.8cm x 1.6cm; ~ 2.0g
DCDC powering

Local power storage

Therrﬁo-mechanical mockilp at EDERN

\t. ‘h’;
5 &

Air-cooling concept

Anticipated power reduction
between factor 10-50
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Detector Integration

ILD integration
study.

ILD simulation
model

A detailed detector concept exists.

It has been simulated in detail.

Most technologies needed have been demonstrated.
A preliminary engineering has been done.

Site specific studies are ongoing.
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Software

Software is a key ingredient for any optimization / design study

It should be

Powerful
Transparent
Easy to use
Easy to instal
extensible

Generator

Jawa, C++, Forlran
CesAintE Genntd

Simulation

Common event data model
Common geometry description model
Framework programs provide the user a simple means to assemble software

LCIO

Java, Cv+ Foriran

Recon-
struction

DD4hep

Juwa, C+, Foriran

Analysis

ILC:

Followed early on an
approach to standardize
software

Cooperation with CLIC



DD4HEP

e Detector is described in
a tree-like hierarchy of
detector elements

* Elements describe

* Geometry
* Material
* Properties
* Elements connect to

* Readout, alignment, visualization..

One common tool to describe and
handle geometries and properties
throught the complete chain!

@ AIDA
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Simulation

Detailed simulation models are crucial to understand precision physics

PRELIMINARY PRELIMINARY
S‘ 'BE_" 4 yw:,en;_
5 10 v V V £ prototypes 4
e = -
2 238
v 9 2 | |
q‘:; = GR width = 0.0 mm 3 24l o 455 GeV jets
g &’ - o 180 GeV jets ,
0 0 —— GRwidth = 0.5 mm > *-250CeVjets 4
- 5 3.4 4
@ 7- = GR width = 1.0 mm - .
: u :
GR width = 2.0 mm [ 3%
= . ﬁ .
ﬁ | | | . '
0 0.2 04 0.6 08 30 | | I I
| cos (theta) | 05 1 1o 2
Guard Ring Width [mm|
Reconstructed energy from ECAL
vs. cos(theta): Impact of the Jet energy resolution
dips are from dead areas and from different guard ring designs.

guard rings in the Si sensors
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Structures

ILD concept group:
* Fairly loose organisation
* Slowly moving towards a more formal “club”, but still far from a collaboration

R&D collaborations

* Technical questions are mostly addressed by R&D collaborations (CALICE, LCTPC, ...)
e Have their own structures
* Get their own funding
* Powerful tool to leverage R&D funds from different sources

Cooperation
* Tried to maintain common basis with other groups (concepts, general studies ...)
*  Common tools played an important role in this.



Summary

Detector studies have been ongoing at the ILC for some time
Integrated detector concepts have been developed
* Fairly detailed designs exist
* Most key technologies are beyond “proof of principle”
* Detailed models of the detector exist

Close cooperation between R&D groups and detector concept group is essential

Next step: much more detailed engineering needed, full integration model is needed,
site specific studies are needed.



