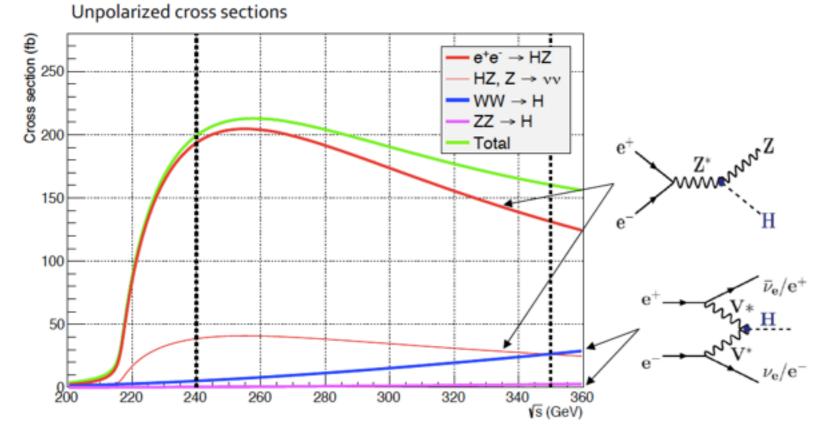
Higgs Group Report

Krisztian Peters (CERN) & Markus Klute (MIT) FCC-ee (TLEP)-Workshop at SNS, Pisa February 5th, 2015

Objectives for year one

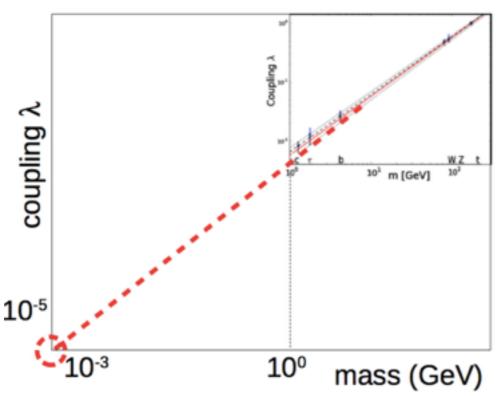

- Refine and expand FCC-ee Higgs physics program
- Identify dependencies in detector design and machine requirements
- Form a collaborative effort

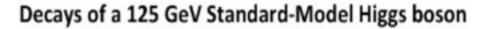
Moving from exploration mode to study mode

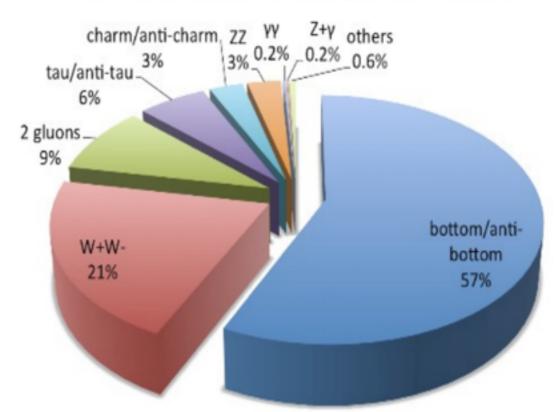
Exploiting very large Higgs sample

- Precision Higgs studies (TLEP Physics case)
- Higgs self coupling through loop corrections
- 1st and 2nd fermion generation couplings
- Rare and exotic decays (e.g. DM decays)
- Extra Higgs bosons
- Tensor structure

	TLEP 240
Total Integrated Luminosity (ab ⁻¹)	10
Number of Higgs bosons from $e^+e^- \rightarrow HZ$	2,000,000
Number of Higgs bosons from boson fusion	50,000

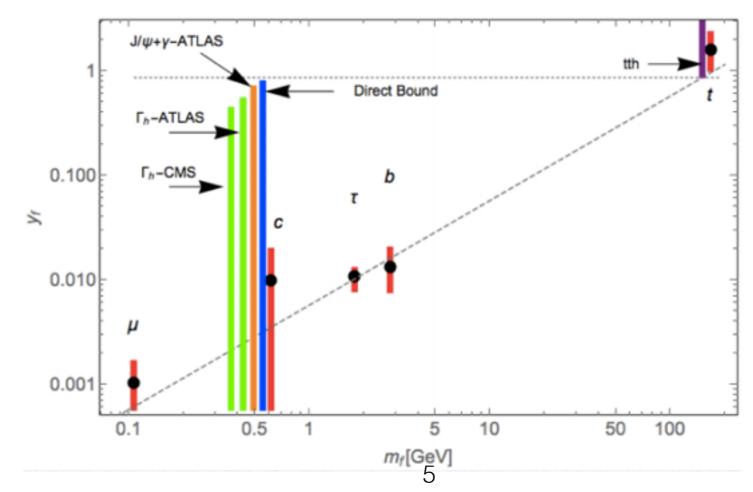



	TLEP 240
$\sigma_{ m HZ}$	0.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm b}\bar{\rm b})$	0.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c\bar{c}})$	1.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$	1.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm WW})$	0.9%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$	0.7%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm ZZ})$	3.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$	3.0%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu \mu)$	13%


TI ED 240

First generation couplings

- s-channel Higgs production (d'Enterria, Aleksan, Wojcik)
- Unique opportunity for measurement close to SM sensitivity



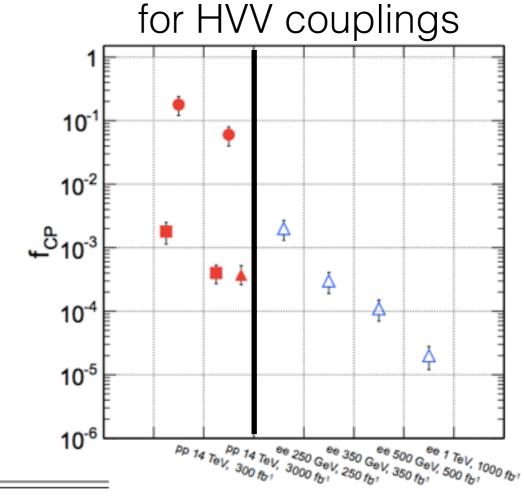
- Questions to follow up
 - how large are loop induced corrections? how large are BSM effects?
 - do we need an energy scan to find the Higgs?
 - how much luminosity will be available for this measurement? By how much is the luminosity reduced by monochromators?
 - can polarization increase sensitivity?

Light quark couplings

- Detailed talk by Yotam Soreq
- Inclusive analysis jet-flavor tagging
 - set requirement for FCC-ee detector
- Exclusive analysis using vector mesons
 - ργ channel most promising

Rare and exotic decays

- 2,000,000 ZH events allow for detailed studies of rare and exotic decays
 - requires hadronic and invisible Z decays
 - set requirements for FCC-ee detector
- Coupling measurements have sensitivity to BSM decays
- Dedicated studies using specific final states improve sensitivity
- Example: Higgs to invisible; flavor violating Higgs; VP and VP* modes; and many more
- Potential at the LHC (and HL-LHC) currently not fully explored
- Modes with of limited LHC sensitivity are of particular importance
 - Currently under study
- Detailed discussion of exotic Higgs decays at Phys. Rev. D 90, 075004 (2014)
- Next step: study a selected number of final states


```
h \rightarrow \mathcal{K}_T
h \rightarrow 4b
h \rightarrow 2b2\tau
h \rightarrow 2b2\mu
h \rightarrow 4\tau, 2\tau 2\mu
h \rightarrow 4j
h \rightarrow 2\gamma 2j
h \rightarrow 4\gamma
h \to ZZ_D, Za \to 4\ell'
h \rightarrow Z_D Z_D \rightarrow 4\ell
h \rightarrow \gamma + \mathbb{Z}_{T}
h \rightarrow 2\gamma + \mathbb{Z}_T
h \rightarrow 4 ISOLATED LEPTONS + \mathbb{Z}_{T}
h \rightarrow 2\ell + \mathbb{Z}_{T}
h \rightarrow ONE LEPTON-JET + X
h \rightarrow \text{TWO LEPTON-JETS} + X
h \rightarrow b\bar{b} + \mathcal{K}_T
```

 $h \to \tau^+\tau^- + \cancel{\mathbb{Z}}_T$

CP Measurements

- CP violation can be studied by searching for CP-odd contributions;
 CP-even already established
- Snowmass Higgs paper http://arxiv.org/abs/
- Higgs to Tau decays of interest
- Estimates available in literature, but somehow naive
- FCC-ee studies are ongoing

ILC 1/ab

$\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + \mathrm{i}\gamma_5\sin\Delta)f$	•
HL-LHC ~11°	

$\sigma_{e^+e^- \to hZ}$	0.30 pb
$Br(h \to \tau^+ \tau^-)$	6.1%
$Br(\tau^- \to \pi^- \pi^0 \nu)$	26%
$Br(Z \to visibles)$	80%
N_{events}	990
Accuracy	4.4°

CEPC1	CEPC5	CEPC10
5.5°	2.5°	1.7°

Summary

- Exploring Higgs physics potential beyond TLEP Physics case studies
 - This talk gives some highlights, not the complete picture
- Exploring requirements / constraints on detector and machine
- Manpower needed to fully explore potential
- Details on Higgs work package in Krisztian's at in Paris