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Introduction and motivations

One of the main features of SU(N) non-abelian gauge theories is the existence of a
deconfinement phase transition, i.e. a temperature above which gluons are “deconfined”,
like the quark-gluon plasma (QGP) in Quantum Chromodynamics. Our goal is to study
the thermodynamics of pure gauge theories in the confining phase when approaching the
deconfinement transition

We choose to study the pure gauge sector of the theory, beacuse it retains most of the
non trivial features of the full theory, without the problems that the regularization of
fermions on the lattice induces. This choice allows much faster and precise Montecarlo
simulations and more importantly In the confining phase the only degrees of freedom of
the theory without quarks are the so-called “glueballs”. Looking at the thermodynamics
of the theory in the confining phase we have a tool to explore the glueball spectrum of
the theory.
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Introduction and motivations

Our main result is that the thermodynamics of the model can only be described assuming
a string-like description of glueballs (and thus a Hagedorn spectrum)
The fine details of the spectrum spectrum agree remarkably well with the predictions of
the Nambu-Goto effective string This turns out to be an highly non trivial test of the
effective string picture of confinement.

This analysis was performed in the 3+1 dimensional SU(3) model in 2009 in the
pioneering work of Meyer1. Now, using the high precision lattice data for SU(3) of 2 and
a new set of data on (3+1) SU(2) that we obtained in 3, we are in the position to refine
the effective string analysis and test its predictive power.
The present results confirm our previous findings4 for (2+1) dimensional SU(N) theories
(with N = 2, 3, 4, 5, 6).

1H. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, 2009
2Sz. Borsanyi et al., Precision SU(3) lattice thermodynamics for a large temperature range, 2012
3M. Caselle, A.Nada, M. Panero,Hagedorn spectrum and thermodynamics of SU(N) Yang-Mills theories,

arXiv:1505.01106
4M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining

phase, 2011
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Lattice regularization

Only a truly non-perturbative approach such as lattice regularization can describe the
deconfinement transition and the confined phase of non-abelian gauge theories.

For SU(N) pure gauge theories on the lattice the dynamics are described by the standard
Wilson action

SW = β
X

p=sp,tp

(1− 1

N
ReTrUp)

where UP is the product of four Uµ SU(N) variables on the space-like or time-like
plaquette P and β = 2N

g2 .

The partition function is

Z =

Z Y
x,µ

dUµ(x)e−SW

and the expectation value of an observable A

〈A〉 =
1

Z

Z Y
n,µ

dUµ(n) A(Uµ(n)) e−SW
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Thermodynamic quantities

On a Nt ×N3
s lattice the volume is V = (aNs )3 (where a is the lattice spacing), while the

temperature is determined by the inverse of the temporal extent (with periodic boundary
conditions): T = (aNt)−1.

The thermodynamic quantities taken into account will be:

the pressure p, that in the thermodynamic limit (i.e. for large and homogenous
systems) can be written as

p ' T

V
log Z(T ,V )

the trace of the energy-momentum tensor ∆, that in units of T 4 is

∆

T 4
=
ε− 3p

T 4
= T

∂

∂T

“ p

T 4

”
Energy density ε = ∆ + 3p and entropy density s = ε+p

T
= ∆+4p

T
can be easily calculated.
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Thermodynamics on the lattice

The pressure can be estimated by the means of the so-called “integral method”1:

p(T ) ' T

V
log Z(T ,V ) =

1

a4

1

Nt N3
s

Z β(T )

0

dβ′
∂ log Z

∂β′
.

It can be written (relative to its T = 0 vacuum contribution) as

p(T )

T 4
= −Nt

4

Z β

0

dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively and P0 is the expectation value at zero T .
The trace of energy-momentum tensor is simply

∆(T )

T 4
= T

∂

∂T

“ p

T 4

”
= −Nt

4T
∂β

∂T
[3(Pσ + Pτ )− 6P0] .

ε and s can be obtained indirectly as linear combinations.

1J. Engels et al., Nonperturbative thermodynamics of SU(N) gauge theories, 1990
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Ideal glueball gas

The behaviour of the system is supposed to be dominated by a gas of non-interacting
glueballs.
The prediction of an ideal relativistic Bose gas can be used to describe the
thermodynamics of such gas. Its partition function for 3 spatial dimensions is

log Z = (2J + 1)
2V

T

„
m2

2π

«2 ∞X
k=1

„
T

km

«2

K2

“
k

m

T

”
where m is the mass of the glueball, J is its spin and K2 is the modified Bessel function
of the second kind of index 2.
Observables such as ∆ and p thus can be easily derived:

p =
T

V
log Z = 2(2J + 1)

„
m2

2π

«2 ∞X
k=1

„
T

km

«2

K2

“
k

m

T

”

∆ = ε− 3p = 2(2J + 1)

„
m2

2π

«2 ∞X
k=1

„
T

km

«
K1

“
k

m

T

”
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Test with the SU(2) model

The SU(2) model is a perfect laboratory to test these results.

It is easy to simulate: very precise results may be obtained with a reasonable
amount of computing power

The deconfinement transition is of second order and thus it is expected to coincide
with the Hagedorn temperature

The masses of several states of the glueball spectrum are known with remarkable
accuracy

The infrared physics of the model is very similar to that of the SU(3) theory, with
one important difference: the gauge group is real and thus only C=1 glueball exist.
The glueball spectrum contains only half of the states with respect to SU(3).
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Lattice setup

N4
s at T = 0 N3

s × Nt at T 6= 0 nβ β-range nconf

324 603 × 5 17 [2.25, 2.3725] 1.5× 105

404 723 × 6 25 [2.3059, 2.431] 1.5× 105

404 723 × 8 12 [2.439, 2.5124] 105

Table: *

Setup of our simulations. The first two columns show the lattice sizes (in units of the
lattice spacing a) for the T = 0 and finite-temperature simulations, respectively. In the

third column, nβ denotes the number of β-values simulated within the β-range indicated
in the fourth column. Finally, in the fifth column we report the cardinality nconf of the

configuration set for the T = 0 and finite-T simulations.
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Scale setting

The SU(2) scale setting is fixed by calculating the string tension via the computation of
Polyakov loop correlators with the multilevel algorithm.

The range of the parameter β which has been considered (β ∈ [2.27, 2.6]) covers
approximately the temperature region analyzed in the finite temperature simulations.

The string tension is obtained with a two-parameter fit of potential

V = − 1

Nt
log〈PP〉

with the first order effective string prediction for the potential

V = σr + V0 −
π

12r

Higher order effective string corrections turned out to be negligible within the precision of
our data.
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Scale setting

β rmin/a σa2 aV0 χ2
red

2.27 2.889 0.157(8) 0.626(14) 0.6
2.30 2.889 0.131(4) 0.627(30) 0.1
2.32 3.922 0.115(6) 0.627(32) 2.3
2.35 3.922 0.095(3) 0.623(20) 0.2
2.37 3.922 0.083(3) 0.621(18) 1.0
2.40 4.942 0.068(1) 0.617(10) 1.4
2.42 4.942 0.0593(4) 0.613(5) 0.1
2.45 4.942 0.0482(2) 0.608(4) 0.4
2.47 4.942 0.0420(4) 0.604(5) 0.3
2.50 5.954 0.0341(2) 0.599(2) 0.1
2.55 6.963 0.0243(13) 0.587(11) 0.2
2.60 7.967 0.0175(16) 0.575(16) 0.3

Table: *

Results for the string tension in units of the inverse squared lattice spacing at different
values of the Wilson action parameter β (first column), calculated by fitting the potential
V as a function of the tree-level improved interquark distance r to the Cornell form. V
was extracted from Polyakov loop correlators on lattices of temporal extent Lt = 32a.
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Scale setting
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Scale setting
The values of the string tension are interpolated by a fit to

log(σa2) =

npar−1X
j=0

aj (β − β0)j with β0 = 2.35

which yields a χ2
red of 0.01. It is presented below along with older data1.

2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65

β

0

0.02
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0.16

0.18

σ
a

2

results from JHEP 0401 (2004) 061

this work
fit

1B. Lucini, M. Teper, U. Wenger, The high temperature phase transition in SU(N) gauge theories, 2003
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SU(2): trace of energy-momentum tensor
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Despite the small values of Nt the data scale reasonably well.
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SU(2): trace of energy-momentum tensor
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Plot of the contribution of lowest glueball state m0++ compared with the data .

Michele Caselle (UniTo) Hagedorn spectrum Sestri Levante 16/09/2015 16 / 57



SU(2): trace of energy-momentum tensor
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The contribution of all glueball states with mass m < 2m0++ .
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A few important observations

Usually the thermodynamics of the system is saturated by the first state (or, in some
cases, the few lowest states) of the spectrum due to the exponential dependence on the
mass.

The large gap between the m0++ and the m < 2m0++ curves and those between them and
the data show that the spectrum must be of the Hagedorn type, i.e. that the number of
states increases exponentially with the mass.

A Hagedorn spectrum is typically the signature of a string like origin of the spectrum.

The thermal behaviour of the model in the confining phase is thus a perfect laboratory to
study the nature of this spectrum and of the underlying string model.

Effective string theory suggests that, with a very good approximation, this model should
be a Nambu-Goto string. Let us see the consequences of this assumption.
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Glueballs as rings of glue

A closed string model for the full glueball spectrum that follows the original work of Isgur
and Paton12 can be introduced to account for the values of thermodynamic quantities
near the transition. In the closed-string approach glueballs are described in the limit of
large masses as “rings of glue”, that is closed tubes of flux modelled by closed bosonic
string states.

The mass spectrum of a closed strings gas in D spacetime dimensions is given by

m2 = 4πσ

„
nL + nR −

D − 2

12

«
where nL = nR = n are the total contribution of left- and right-moving phonons on the
string.

Every glueball state corresponds to a given phonon configuration, but associated to each
fixed n there are multiple different states whose number is given by π(n), i.e. the
partitions of n.

1N. Isgur and J. Paton, A Flux Tube Model for Hadrons in QCD, 1985
2R. Johnson and M. Teper, String models of glueballs and the spectrum of SU(N) gauge theories in

(2+1)-dimensions, 2002
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The density of states ρ(n) is expressed through the square of π(n):

ρ(n) = π(nL)π(nR ) = π(n)2 ' 12 (D − 2)
D−1

2

„
1

24n

« D+1
2

exp

 
2π

r
2(D − 2)n

3

!
in D spacetime dimensions.
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Spectral density

The Hagedorn temperature1 is defined as

TH =

s
3σ

π(D − 2)

The spectral density as a function of the mass (i.e. ρ̂(m)dm = ρ(n)dn) can be expressed
as

ρ̂(m) =
(D − 2)D−1

m

„
πTH

3m

«D−1

em/TH

where the characteristic Hagedorn-like exponential spectrum appears and can be used to
describe the glueball spectrum above an arbitrary mass threshold.

The trace of the energy-stress tensor can be integrated on masses bigger than 2m0++

with the degeneracy ρ̂(m) and summed to the contribution of the mass states computed
on the lattice.

∆ =
X

m<2m0++

(2J + 1)∆(m,T ) +

Z ∞
2m0++

dm ρ̂(m) ∆(m,T )

1R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)
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SU(2): trace of energy-momentum tensor
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SU(2) vs. SU(3)

The SU(3) case was studied for the first time in 2009 in the pioneering work of Meyer1.
Now, using the high precision lattice data for SU(3) of 2 we are in the position to test the
Hagedorn behaviour in a very stringent way.
There are two main diffeences between SU(2) and SU(3):

SU(3) has a first order deconfining transition, so Tc < TH .

SU(3) has complex representations, thus glueballs have an additional quantum
number C and the glueball spectrum contains twice the number of glueballs than in
the SU(2) case

In principle we could consider in this case TH as a free parameter, but in the effective
string framework we may safely fix it at the expected Nambu-Goto value
TH =

p
3σ/2π = 0.691..

√
σ. Lorentz invariance of the effective string tells us that this

should be a very good approximation of the exact result and that we should expect only
small deviations from this value.
The relation between TH and Tc is:

TH

Tc
= 1.098

1H. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, 2009
2Sz. Borsanyi et al., Precision SU(3) lattice thermodynamics for a large temperature range, 2012
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SU(3): trace of energy-momentum tensor
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Also in this case the m < 2m0++ sector of the glueball spectrum is not enough to fit the
behaviour of ∆/T 4 .
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SU(3): trace of energy-momentum tensor
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While including the whole Hagedorn spectrum we find again a remarkable agreement
with no free parameter!
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SU(2) vs. SU(3)

It is instructive to compare the SU(2) and SU(3) data

For N = 3 the closed flux tube has two possible orientations that account for the
C = +1/− 1 sectors. Thus a further twofold degeneracy must be introduced in the string
spectrum.

This doubling of the Hagedorn spectrum is clearly visible in the data
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SU(2) vs. SU(3): results for trace of energy-momentum tensor
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SU(N) Yang-Mills theories in (2 + 1) dimensions

The same picture is confirmed by a study we performed a few years ago1 in (2+1)
dimensional SU(N) Yang-Mills theories for N = 2, 3, 4, 6.
Also in (2+1) dimensions we found that:

a Hagedorn spectrum was mandatory to fit the thermodynamic data

there was a jump between the SU(2) and the SU(N > 2) case due to the doubling
of the spectrum

we had to fix the Hagedorn temperature to the Nambu-Goto value which, due to the
different number of trensverse degrees of freedom is different from the (3+1)
dimensional one: TH =

p
3σ/π = 0.977..

√
σ

Moreover we found that in the vicinity of the critical point there was an excess of ∆/T 4

with respect to our predictions for N = 4, 5 and 6 and that this excess increases with N.
This could be understood as due to the k-string glueballs

1M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining
phase, 2011
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SU(N) Yang-Mills theories in (2 + 1) dimensions
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Summary of the first part of the Talk

The thermodynamics of SU(2) and SU(3) Yang-Mills theories in d = (3 + 1) is well
described by a gas of non-interacting glueballs

The agreement is obtained only assuming a Hagedorn spectrum for the glueballs

The fine details of the spectrum, in particular the Hagedorn temperature, agree well
with the predictions of the Nambu-Goto effective string.

The results agree with previous findings in d = (2 + 1) SU(N) Yang Mills theories
with N = 2, 3, 4, 5, 6

As N increases the data suggest the presence of extra states in the spectrum which
could be k-glueballs states, which could be described by a k-string spectrum
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Universality of the effective string action.

Why the Nambu-Goto string works so well?

The main reason is that the Effective String action is strongly constrained by Lorentz
invariance. The first few orders of the action are universal and coincide with those of
the Nambu-Goto action. This explains why N.-G. describes so well the infrared
regime of Wilson loops or Polyakov Loop correlators and the glueball spectrum.1 2 3

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065

Michele Caselle (UniTo) Hagedorn spectrum Sestri Levante 16/09/2015 31 / 57



Lattice determination of the interquark potential.

In pure lattice gauge theories the interquark potential is usually extracted from two
(almost) equivalent observables

Wilson loop expectation values < W (R,T ) > (”zero temperature potential”)

V (R) = lim
T→∞

− 1

T
log< W (R,T ) >

Polyakov loop correlators < P(0)P(R)† > (”finite temperature potential”)

< P(0)P(R)† > ∼
∞X

n=0

cn e−LEn

where L is the inverse temperature, i.e. the length of the lattice in the compactified
imaginary time direction

E0 = V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Wilson Loop.

A Wilson loop of size R × T

 

V (R) = lim
T→∞

− 1

T
log< W (R,T ) >
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Polyakov loop correlator.

Expectation value of two Polyakov loops at distance R and Temperature T = 1/L

 

 

 

 R 

L 

V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Wilson Loops.

In the Wilson loop framework confinement is equivalent to the well known
area-perimeter-constant law:

< W (R,T ) >= e−(σRL+c(R+T )+k)

which implies V (R) = σR + c.
Confinement is usually associated to the creation (via a mechanism which still has to be
understood) of a thin flux tube joining the quark antiquark pair. (Nielsen-Olesen, ’t
Hooft, Wilson, Polyakov, Nambu ....) However if we accept this picture we cannot
neglect the quantum fluctuations of this flux tube. The area law is thus only the classical
contribution to the interquark potential and we should expect quantum corrections to its
form. The theory which describes these quantum fluctuations is known as ”effective
string theory”.
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Effective string action

The simplest choice for the effective string action is to describe the quantum fluctuations
of the flux tube as free massless bosonic degrees of freedom

S = Scl +
σ

2

Z
d2ξ [∂αX · ∂αX ] ,

where:

Scl describes the usual (”classical”) area-perimeter term.

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the surface
of minimal area representing the configuration around which we expand

ξ0, ξ1 are the world-sheet coordinates.
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The Lüscher term.

The first quantum correction to the interquark potential is obtained summing over
all the possible string configuration compatible with the Wilson loop (i.e. with
Dirichlet boundary conditions along the Wilson loop).

This is equivalent to the sum over all the possible surfaces borderd by the Wilson
loop i.e. to the partition function

< W (R,T ) >=

Z
e−σRT−σ

2

R
d2ξX i (−∂2)X i

The functional integration is a trivial gaussian integral, the result is

V (R) = σR − (d − 2)π

24R
+ c

This quantum correction is known as ”Lüscher term” and is universal i.e. it does not
depend on the ultraviolet details of the gauge theory but only on the geometric
properties of the flux tube.
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The Lüscher term.

This correction is in remarkable agreement with numerical simulations. First high
precision test in d=4 SU(3) LGT more than ten years ago. 1

Figure: The static potential. The dashed line represents the bosonic string model and the solid line the
prediction of perturbation theory.

1S. Necco and R. Sommer, Nucl.Phys. B622 (2002) 328
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The Lüscher term.
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Figure: The force in the continuum limit and for finite resolution, where the discretization errors are estimated
to be smaller than the statistical errors. The full line is the perturbative prediction. The dashed curve
corresponds to the bosonic string model normalized by r 2

0 F (r0) = 1.65.
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The Nambu-Goto action.

Evaluation of higher order quantum corrections requires further hypothesis on the
nature of the flux tube. The simplest choice is the Nambu-Goto string in which
quantum corrections are evaluated summing over all the possible surfaces bordered
by the Wilson loop with a weight proportional to their area.

S = σ

Z
d2ξ
p

det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

Z
d2ξ

»
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

–
,
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Interquark potential for the Nambu-Goto action.

In the framework of the Nambu-Goto action one can evaluate exactly the energy of
all the excited states of the flux tube:

En(R) =

s
σ2R2 + 2πσ

„
n − D − 2

24

«
In particular E0(R) corresponds to the interquark potential

V (R) = E0(R) =

r
σ2R2 − 2πσ

D − 2

24
,

V (R) ∼ σR − π(D − 2)

24R
− 1

2σR3

„
π(D − 2)

24

«2

+ O(1/R5) ,
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The Nambu-Goto action.
High precision fit in the SU(2) case in 2+1 dimensions (A. Athenodorou, B. Bringoltz,
M. Teper JHEP 1105:042 (2011) )
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Figure 6: Energy of absolute ground state for SU(2) at β = 5.6. Compared to full Nambu-Goto
(solid curve) and just the Lüscher correction (dashed curve).
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The Nambu-Goto action.
High precision fit in the 2+1 dimensional Ising gauge model (M. Caselle, M. Hasenbusch,
M. Panero JHEP 0301 (2003) 057)
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Interquark potential via Polyakov Loop correlators and the Hagedorn
temperature.

In this case we have different boundary conditions in the two directions (space R
and inverse temperature L).

The novel feature of this observable is that by exchanging R and L (the so called
”open-closed string transformation”) we can study the finite temperature behaviour
of the string tension.

V (R) = σ(T )R, σ(T ) = σ0

r
1− (d − 2)πT 2

3σ0

where T is now the temperature and σ0 the zero temperature string tension

From this expression we may deduce a ”Nambu-Goto” prediction for the critical
temperature:

Tc√
σ0

=

s
3

(d − 2)π

which turns out to be in remarkable agreement with LGT results both in d=3 and
d=4.
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Universality of effective string corrections.

The reason of the success of the Nambu-Goto approximation is that the effective String
action is strongly constrained by Lorentz invariance1 2 3. The first few orders of the
action are universal and coincide with those of the Nambu-Goto action.

The most general action for the effective string can be written as a low energy expansion
in the number of derivatives of the transverse fields (”physical gauge”).

S = Scl +
σ

2

Z
d2ξ

h
∂αX · ∂αX + c2(∂αX · ∂αX )2 + c3(∂αX · ∂βX )2 + . . .

i
+ Sb ,

where:

Scl describes the usual (”classical”) perimeter-area term.

Sb is the boundary contribution characterizing the open string

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the surface
of minimal area representing the configuration around which we expand

ξ0, ξ1 are the world-sheet coordinates.

In the Nambu-Goto case c2 = 1
8

and c3 = − 1
4

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
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Effective string and spacetime symmetries.

Symmetries of the action must hold in the low
energy regime.

String vacuum is not Poincaré invariant.

=⇒ Poincaré symmetry is broken
spontaneously.

ISO(D − 1, 1)→ SO(D − 2)⊗ ISO(1, 1). =⇒ 3(D − 2) Goldstone bosons?

Only D − 2 tranverse fluctuations of the string, where are the remaining Goldstone
bosons?

Goldstone’s theorem states that there is a massless mode for each broken symmetry
generator, but this counting cannot be naively extended to the case of spontaneously
broken spacetime symmetries1 .

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s theorem”
Phys.Rev.Lett. 88 (2002) 101602
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Effective string and spacetime symmetries.

The remaining 2(D − 2) Lorentz transformations are realized non-linearly and induce
a set of recurrence relations among different terms in the action.! 1

δbj
ε Xi = ε (−δijξb − Xj∂bXi )

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s theorem”
Phys.Rev.Lett. 88 (2002) 101602
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Non-linear realization and long-string expansion.

A few rules to construct the most general effective string action:

Broken translations:
X i → X i + ai . =⇒ Only field derivatives in the effective action.

Broken rotation in the plane (1, 2):

δbj
ε Xi = ε (−δijξb − Xj∂bXi )

Number of derivatives minus number of fields (weight) preserved.

Fields and coordinates rescaling =⇒ Derivative expansion:

∂aX
i −→ 1√

σR
∂aX

i .

Variations by broken rotation mix orders =⇒ Recurrence relations.

ISO(1, 1) and SO(D − 2) invariance =⇒ Contraction of indices.
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Effective string action is strongly constrained!

The terms with only first derivatives coincide with the Nambu-Goto action to all
orders in the derivative expansion.

The first allowed correction to the Nambu-Goto appears at a very large order and, in
SU(N) gauge models gives a contribution to the interquark potential of the order
1/R5 in d = 3 + 1 and 1/R7 in d = (2 + 1) which are almost negligible1 2 3.
(This is not the case for the (2+1) U(1) model, but this is another story...) 4

The effective string action is much more predictive than typical effective models in
particle physics!

The fact that the first deviations from the Nambu-Goto string are of such high order
explains why it works so well both in describing the interquark potential and the
glueball spectrum

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
4M. Caselle, M.Panero, R. Pellegrini, D. Vadacchino, JHEP 1501 (2015) 105
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Conclusions

The thermodynamics of SU(2) and SU(3) Yang-Mills theories in d = (3 + 1) is well
described by a gas of non-interacting glueballs

The agreement is obtained only assuming a Hagedorn spectrum for the glueballs

The fine details of the spectrum, in particular the Hagedorn temperature, agree well
with the predictions of the Nambu-Goto effective string.

The special role played by the Nambu-Goto string can be understood in the
framework of the effective string approach to the infrared regime of confining gauge
theories and is a direct consequence of the non-linear realization of the Lorentz
invariance of these theories.

The results agree with previous findings in d = (2 + 1) SU(N) Yang Mills theories
with N = 2, 3, 4, 5, 6

As N increases the data suggest the presence of extra states in the spectrum which
could be k-glueballs states, whcih could be described by a k-string spectrum

Overall the behaviour of thermodynamic observables in the confining regime of
Yang-Mills theories turns out to be an highly non trivial test of the effective string
picture of confinement.
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Geometrical description.

A more intuitive geometrical description of this result is obtained using the original string
action, without fixing the physical gauge.
The effective action is given by the most general mapping:

Xµ :M→ RD , µ = 0, · · · ,D − 1

M : two-dimensional surface describing the worldsheet of the string

RD : (flat) D dimensional target space RD of the gauge theory.

Main Result 1 :

The first few terms of the action compatible with Poincaré and parity invariance are
suitable combinations of geometric invariants constructed from the induced metric
gαβ = ∂αXµ∂βXµ.

These terms can be classified according to their weight, i.e. the difference between
the number of derivatives minus the number of fields Xµ

1O. Aharony and Z. Komargodski, JHEP 1305 (2013) 118

Michele Caselle (UniTo) Hagedorn spectrum Sestri Levante 16/09/2015 52 / 57



Geometrical description.

The only term of weight zero is the Nambu-Goto action

SNG = σ

Z
d2ξ
√

g ,

where g ≡ det(gαβ).

This term has a natural geometric interpretation: it measures the area swept out by
the worldsheet in space-time.

Fixing the physical gauge one finds (choosing an euclidean metric)

S = σ

Z
d2ξ
p

det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

Z
d2ξ

»
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

–
,
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Geometrical description.

At weight two, two new contributions appear:

S2,R = γ

Z
d2ξ
√

gR ,

S2,K = α

Z
d2ξ
√

gK 2,

where R denotes the Ricci scalar constructed from the induced metric, and
K ≡ ∆(g)X is the extrinsic curvature, where ∆(g) is the Laplacian in the space
with metric gαβ .

However both these terms can be neglected!

R is topological in two dimensions and, since in the long string limit in which we are
interested we do not expect topologically changing fluctuations, its contribution is
constant and can be neglected.

In ordinary Yang-Mills theories K 2 only gives exponentially suppressed corrections
and can be neglected.
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Evaluation of the Lüscher term.

The gaussain integration gives:Z
e−

σ
2

R
d2ξX i (−∂2)X i

∝
h
det(−∂2)

i− d−2
2

.

The determinant must be evaluated with Dirichlet boundary conditions. The
spectrum of −∂2 with Dirichlet boundary conditions is:

λmn = π2

„
m2

T 2
+

n2

R2

«
corresponding to the normalized eigenfunctions

ψmn(ξ) =
2√
RT

sin
mπτ

T
sin

nπς

R
.
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Evaluation of the Lüscher term.

The determinant can be regularized with the ζ-function technique: defining

ζ−∂2 (s) ≡
∞X

mn=1

λ−s
mn

the regularized determinant is defined through the analytic continuation of ζ′−∂2 (s)
to s = 0:

det(−∂2) = exp
ˆ
−ζ′−∂2 (0)

˜
.

The result is h
det(−∂2)

i− d−2
2

=

»
η(τ)√

R

–− d−2
2

.

where η(τ) is the Dedekind function

η(τ) = q1/24Π∞n=1(1− qn)

with q ≡ e2πiτ and τ = iT/R.
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Derivation of the Nambu-Goto action.

The Nambu-Goto action is given by the area of the world–sheet:

S = σ

Z T

0

dτ

Z R

0

dς
√

g ,

where g is the determinant of the two–dimensional metric induced on the
world–sheet by the embedding in Rd :

g = det(gαβ) = det ∂αXµ∂βX
µ (α, β = τ, ς, µ = 1, . . . , d)

Choosing the ”physical gauge”

X 1 = τ X 2 = ς

g may be expressed as a function of the transverse degrees of freedom only:

g = 1 + ∂τX
i∂τX

i + ∂ςX
i∂ςX

i

+∂τX
i∂τX

i∂ςX
j∂ςX

j − (∂τX
i∂ςX

i )2 (i = 3, . . . , d) .

Expanding we find:

S ∼ σRT +
σ

2

Z
d2ξ

»
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

–
,
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