

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Holographic Charged Impurities

[1507.02280]

with

L.A. Pando-Zayas (Michigan, USA) I. Salazar Landea (La Plata, Argentina) A. Scardicchio (ICTP, Italy)

> Daniel Areán Sestri Levante, September 2015

= * Islands

Disorder can suppress the Superconductivity

* 'Disordered' SC phase transition (non mean-field)

OUTLINE

- > Setup: holo SC w/ noise
- > Results: Islands, phase transition, Conductivity.
- > Future: Thin Films, backreaction (insulator?), ...

> SC to insulator disorder-induced phase transition

> Experiment

▲ Superfluid Density

> Theory (quantum Montecarlo)

Condensate

0.4

 Δ

0

 ω/E_J

[Swanson et al, 1310.1073]

> SETUP: Dirty Holo (s-wave) Superconductor

Holo SC

• Action (probe limit) $S = \int d^4x \sqrt{-g} \left(-\frac{1}{4} F_{ab} F^{ab} - (D_\mu \Psi) (D^\mu \Psi)^\dagger - m^2 \Psi^\dagger \Psi \right)$

• Geometry: Sch-AdS BH
$$ds^2 = \frac{1}{z^2} \left(-f(z)dt^2 + \frac{dz^2}{f(z)} + dx^2 + dy^2 \right)$$
, $f(z) = 1 - z^3$

$$\Psi(x,z) = \psi(x,z), \quad \psi(x,z) \in \mathbb{R} \quad \sim \langle O(x) \rangle$$

• Field content

$$A = \phi(x, z) dt \quad \sim \quad \mu(x)$$

[Hartnoll et al'08]

> SETUP: Dirty Holo (s-wave) Superconductor

Flat Noise

$$\mu(x) = \mu_0 + w \mu_0 \sum_{k=k_0}^{k_*} \cos(k x + \delta_k)$$

- $\bullet w$ Noise strength
- $k_0 \sim$ 1/(System Size). [IR Scale]
- $k_* \sim$ 1/Correlation length [UV Scale]

with...

$$\phi(x,z) = \mu(x) - \rho(x) z + \dots$$

$$\psi(x,z) = \psi^{(1)}(x) z + \langle O(x) \rangle z^2 + \dots$$

• UV (z=0) Boundary Conditions

> SETUP: Solving the background

- ullet w Noise strength
- $k_0 \sim$ 1/(System Size). [IR Scale]
- $k_* \sim$ 1/Correlation length [UV Scale]

> Results: The Inhomogeneous Condensate

> Results: Phase transition @ finite disorder

> Let's plot the average of the condensate vs Temperature

[See Griffiths' phases... T. Vojta, PRL'03]

> **Results:** Phase transition @ finite disorder

> Average of the condensate vs Temperature...

> Computing the conductivity [=> Superfluid density]

> Reminder: Homogeneous case

> Noisy conductivity

$\mu = 5 \to T \sim 0.8 T_c$ $L_x = 80\pi, 9 \text{ modes}$

> The superfluid density

> Noisy conductivity

 $\mu = 5 \to T \sim 0.8 \, T_c$

disorder 'excites' the Goldstone

> The AC Conductivity. Large disorder [Higgs mode?]

> The AC Conductivity. [Higgs mode...]

The Goldstone QNM has a massive partner ...

> Outlook & To Do

>Disordered holo SCs: both s- and p-wave [1308.1920, 1407.7526]

>1D Islands of Superfluidity

> 'Disordered' phase transition (non mean field)

>Conductivity: superfluid density \Rightarrow phase diagram, ~ Higgs mode

>Future Thin Films, backreaction (insulator?), ...

> AND NOW, SOME ADDITIONAL SLIDES...

> **Results:** TENTATIVE PHASE DIAGRAM

Plotting the minimum vs noise for several values of $\boldsymbol{\mu}$

***** Enhancement and the island menace

* Spectrum 'renormalization'

>>> Noisy chemical potential

* Spectrum 'renormalization'

>input spectrum

> OUTPUT

> Noisy chemical potential

> Thermodynamic limit

Thermo limit: Noise correlation length << System length</p>

> Flat spectrum noise: correlation length $\propto 1$ / (grid size)

• Condensate and Charge density are self-averaging in the thermo limit:

> X_n is self-averaging when

$$\frac{\langle X_n^2 \rangle - \langle X_n \rangle^2}{\langle X_n \rangle^2} \to 0$$

Condensate

> Thermodynamic limit

Thermo limit: Noise correlation length << System length</p>

> Flat spectrum noise: correlation length $\propto 1$ / (grid size)

• Condensate and Charge density are self-averaging in the thermo limit:

> X_n is self-averaging when

$$\frac{\langle X_n^2 \rangle - \langle X_n \rangle^2}{\langle X_n \rangle^2} \to 0$$

Charge density

> Simulation #1

$$\mu(x) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \sqrt{S_k} \cos(kx + \delta_k) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \frac{1}{k^{\alpha}} \cos(kx + \delta_k)$$
$$w = 25\epsilon/\mu_0$$

• $\mu_0 = 3.50$, $\alpha = 1.50$, w = 3.50 $[\mu_0 < \mu_c = 3.66]$

> Simulation #1

$$\mu(x) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \sqrt{S_k} \cos(kx + \delta_k) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \frac{1}{k^{\alpha}} \cos(kx + \delta_k)$$
$$w = 25\epsilon/\mu_0$$

• $\mu_0 = 3.50, \ \alpha = 1.50, \ w = 3.50$ $[\mu_0 < \mu_c = 3.66]$

> Simulation #2 Flat Noise

$$\mu(x) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \sqrt{S_k} \cos(kx + \delta_k) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \frac{1}{k^{\alpha}} \cos(kx + \delta_k)$$
$$w = 25\epsilon/\mu_0$$

• $\mu_0 = 3.50$, $\alpha = 0$, w = 3.50 $[\mu_0 < \mu_c = 3.66]$

Simulation #2

$$\mu(x) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \sqrt{S_k} \cos(kx + \delta_k) = \mu_0 + \epsilon \sum_{k=k_0}^{k_*} \frac{1}{k^{\alpha}} \cos(kx + \delta_k)$$

$$w = 25\epsilon/\mu_0$$

• $\mu_0 = 3.50$, $\alpha = 0$, w = 3.50 $[\mu_0 < \mu_c = 3.66]$

$$L_x = 2\pi \rightarrow K_0 = 1$$
$$N_z \times N_x = 25 \times 75$$