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Figure 1: On the left we plot ⟨O2⟩ versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature ⟨O2⟩ vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.

3.1.1 The free energy

In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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> Motivation: Disorder-induced SIT


> Setup: holo SC w/ noise


> Results: Islands, phase transition, Conductivity.


> Future: Thin Films, backreaction (insulator?), . . .
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Figure 3 | Higgs conductivity and spectral weight. a, Experimental and theoretical results for the Higgs conductivity � H
1 , as a function of energy for three

NbN films of di�erent disorder. The numerical results25 were obtained for a fixed value of EC/EJ, whereas the degree of disorder, reflecting breaking bonds
between the superconducting islands, is denoted by p. Qualitative and quantitative features are shared by both experiment and theory. The sharp lines in
the experimental data are due to interpolation between measured data points. b, Charge carrier density N in the normal state obtained from Hall
measurements (red squares) and superfluid density, ⇢s, measured by optical spectroscopy as functions of Tc/Tclean

c (reflecting the degree of disorder).
Note the faster decrease of ⇢s with increasing disorder, indicating the vanishing contribution of the superfluid condensate to the spectral weight.
c, Redistribution of the ‘missing’ spectral weight s between the normal and superconducting states versus the superfluid density ⇢s, as defined in equation
(4). The observed linear relation indicates that the redistribution of the spectral weight occurs within our measured energy spectrum.

sum rule26 for the ‘missing’ spectral weight s between normal and
superconducting states,

s=
Z 1

0+
d![� n

1 (!)�� s
1(!)]⇠⇢s (4)

a reduced superfluid density ⇢s on increasing disorder leads to
a reduced value of s. As the quasiparticle gap remains fairly
unchanged with disorder, this necessarily causes the spectral weight
contribution of the Higgs mode,

R
d!�H

1 (!), to become more
pronounced. Figure 3c shows the detected linear relationship
between the missing spectral weight, s, and the superfluid density,
⇢s, for several filmswith di�erent degrees of disorder, thus providing
the self consistency of the above argument and eliminating the
possibility of a redistributed spectral weight to higher frequencies
(due to a sudden change in the scattering rate, for example).

We conclude that the low-frequency absorption observed
by optical spectroscopy originates from the Higgs mode in
superconductors close to a quantum phase transition. As the
system approaches the critical point, the energy scale for this
mode decreases and its magnitude grows, exhibiting quantitative
agreement with numerical simulations.

The study of the properties of disordered superconductors is
a subject of ongoing intense activity, mostly because it is viewed
as being one of the few physical systems that can be tuned
through a two-dimensional quantum critical point, which is not
mean-field-like. The softening of the Higgs mode is direct proof
that the SIT transition is a quantum critical point in which a
diverging timescale is detected. Evidently, the vicinity to the QPT
o�ers a unique opportunity to study the nature of the low-energy
collective excitations in superconductors. Going beyond disordered
superconductors, our findings can play a role in tracing collective
excitations in other quantum critical condensed matter systems and
might influence related fields such as Bose-condensed ultracold
atoms, quantum statistical mechanics and high-energy physics.

Methods
The InO films were deposited on 10 ⇥ 10mm2 of THz-transparent MgO or
sapphire substrates (with various thickness ranging from 0.5 to 1.5mm) by e-gun

evaporation. During the deposition process dry oxygen was injected into the
chamber; the partial oxygen pressure allows us to tune the disorder. The NbN
films were grown on similar MgO substrates by reactive magnetron sputtering,
where the Nb/N ratio in the plasma served as a disorder tuning parameter. In
both cases the deposited films were structurally homogeneous; the thickness
ranges from 15 to 40 nm. DC transport measurements were used to characterize
Tc. THz spectroscopy has been applied in the past to confirm the BCS theory, as
it probes the energy range of the superconducting gap27–29. The experimental
set-up27,28 is based on several backward wave oscillators as powerful radiation
sources to emit continuous-wave, coherent radiation which, in sum, can be tuned
over the frequency range 0.05–1.2 THz, corresponding to a photon energy of
0.18–5meV. We employ a quasi-optical Mach–Zehnder interferometer to measure
the complex transmission T = tei✓ , with t the amplitude and ✓ the phase shift of
radiation passing through the sample under study, from which the complex
conductivity, �̂ (!), is directly calculated. The samples were mounted in an optical
4He cryostat with a continuously accessible temperature range spanning from 300
to 1.85K. To further proceed with the experimental data, we employ two analysis
routines. In the first, t and ✓ are simultaneously fitted to a combination of Fresnel
equations (for multiple reflections)26 for the optics and an appropriate
microscopic model for the charge carrier dynamics (that is, Drude theory for the
metallic state and BCS theory for the superconducting state, complemented by a
finite scattering rate30). Free-electron parameters (such as the scattering rate or
plasma frequency) required for the BCS fit are taken from Drude fits to the
normal-state t and ✓ slightly above the superconducting transition. The
superconducting energy gap 2� is then obtained as the sole fit parameter.
Although this approach is well established for BCS-type—that is,
non-disordered—superconducting systems, it fails for disordered systems beyond
the Anderson limit. The second routine is suited for systems where no
microscopic model is available—that is, strongly disordered systems. In a narrow
band around each Fabry–Perot resonance (which are caused by the finite
thickness of the sample), we fit t and ✓ exclusively to the Fresnel equations using
�1 and �2 as fit parameters. Depending on the optical thickness of the substrate
this routine yields 10 to 15 pairs of �1 and �2 for each resonance frequency !i.
Details of the experimental set-up and analysis routines are found, for example,
in refs 26–29,31.
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Dynamical Conductivity Across The Disorder-Tuned Superconductor-Insulator

Transition
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(2) Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, USA

(Dated: February 12, 2014)

We calculate the dynamical conductivity �(!) and the bosonic (pair) spectral function P (!)
from quantum Monte Carlo simulations across clean and disorder-driven superconductor-insulator
transitions (SIT). We identify characteristic energy scales in the superconducting and insulating
phases that vanish at the transition due to enhanced quantum fluctuations, despite the persistence
of a robust fermionic gap across the SIT. Disorder leads to enhanced absorption in �(!) at low
frequencies compared to the SIT in a clean system. Disorder also expands the quantum critical
region, due to a change in the universality class, with an underlying T = 0 critical point with a
universal low-frequency conductivity �⇤ ' 0.5(4e2/h).

The interplay of superconductivity and localization has
proven to be a rich and intriguing problem, especially in
two dimensions1–7. Both paradigms stand on the shoul-
ders of giants – the BCS theory of superconductivity and
the Anderson theory of localization. Yet, when the com-
bined e↵ects of superconductivity and disorder are con-
sidered, both paradigms break down, even for s-wave su-
perconductors.

It has been shown8–10 in model fermionic Hamiltoni-
ans with attraction between electrons and disorder aris-
ing from random potentials, that the single-particle den-
sity of states continues to show a hard gap across the
disorder-driven quantum phase transition and that pairs
continue to survive into the insulating state. The super-
conducting transition temperature T

c

, however, does de-
crease with increasing disorder and vanishes at a critical
disorder signaling a superconductor-insulator transition
(SIT). These theoretical predictions are supported by
scanning tunneling spectroscopy experiments11–14 and by
magnetoresistance oscillations6 in disordered thin films.

Recent conductivity measurements at frequencies well
within the superconducting gap (0–20 GHz)15–20 have ob-
served low-frequency features that cannot be accounted
for by pair-breaking mechanisms. A theoretical under-
standing of the low-frequency dynamical conductivity is
vital for understanding the role of fluctuations and for
guiding future experiments that probe the SIT.

The robustness of the single-particle gap across the SIT
suggests that the low-energy physics near the SIT can be
described by an e↵ective “bosonic” Hamiltonian, the dis-
ordered quantum XY model, where the relevant degrees
of freedom are the phases of the local superconducting
order parameter. This model is also relevant for ultra-
cold atomic gases in optical lattices where the transition
is tuned by changing the tunneling of bosons compared
to their on-site repulsion21–24. More recently, it has also
become possible to include disorder in optical lattices us-
ing speckle patterns. By increasing the strength of the
disorder potential it could be possible to drive quantum
phase transitions from a superfluid to a Bose glass25–28;
our results are also relevant for such experiments.

We map the quantum (2+1)D XY Hamiltonian to an

NATURE PHYSICS DOI: 10.1038/NPHYS2037
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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FIG. 1. The emergent inhomogeneity of the local pairing am-
plitude �(r) in a disordered superconductor in the left panel
and the robustness of the single particle gap8–10 across the
SIT suggests an e↵ective low-energy description in terms of a
disordered quantum XY model shown on the right. The quan-
tum phase transition occurs when long range phase coherence
is lost between weakly connected “superconducting islands”
tuned by the ratio E

c

/E
J

of charging energy to Josephson
coupling as well as by disorder, modeled by removing a frac-
tion p of the Josephson bonds.

anisotropic classical 3D XY model29–31 and simulate the
model using Monte Carlo methods. We focus on the be-
havior of two dynamical quantities of fundamental sig-
nificance, the conductivity �(!) and the boson (“pair”)
spectral function P (!) obtained by analytic continuation
from imaginary time using the maximum entropy method
supplemented by sum rules. Disorder is introduced into
the quantum model by breaking bonds (“Josephson cou-
plings”) on a 2D square lattice with a probability p. We
compare the results of the disorder-driven SIT with the
clean system29,32, where the SIT is tuned by E

c

/E
J

, the
charging energy relative to the Josephson coupling.

Our main results are as follows.

(1) The conductivity Re�(!) in the clean superconductor
shows absorption above a threshold !Higgs that can be
associated with the scale of the Higgs (amplitude) mode.
As we approach the SIT from the superconducting (SC)
side, both the superfluid sti↵ness ⇢

s

and the Higgs scale
!Higgs go soft and vanish at the SIT, even though the
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FIG. 4. Dynamical response functions across the disorder-tuned SIT. The critical disorder p
c

= 0.337 is marked as a dashed
line; T/E

J

= 0.156, E
c

/E
J

= 3.0 and L = 64. (a) In the conductivity Re�(!) the superfluid response is evident as a zero-
frequency delta function of strength ⇢

s

. Deep in the insulator there is a gap in Re�(!) that grows with disorder. (b) ! Im�(!)
shows a crossover from “inductive” (! Im�(!) = ⇢

s

> 0) to “capacitative” (! Im�(!) < 0) behavior at small ! across the
transition. (c) The boson spectral function ImP (!)/!, which has a peak centered about zero frequency in the superconductor,
develops a characteristic scale e!

B

in the insulator that grows with disorder.

the boson spectral function ImP (!). We estimate the
superfluid sti↵ness ⇢

s

using ⇢
s

/⇡ = ⇤
xx

(q
x

! 0, q
y

=
0, i!

n

= 0) � ⇤
xx

(q
x

= 0, q
y

! 0, i!
n

= 0), which is
the di↵erence of the longitudinal and transverse pieces
of the current-current correlation function ⇤

xx

. Here
j
x

(r, ⌧) ⇠ sin [✓(r+ x̂, ⌧)� ✓(r, ⌧)] is the current and
!
n

= 2⇡nT are Matsubara frequencies.

We use the Kubo formula for the complex conductivity
�(!) expressed in terms of ⇤

xx

(q = 0, ⌧) and transform
the imaginary-time QMC results to real frequency using
the maximum entropy method (MEM); see Appendix B.
We have checked our results extensively using sum rules
and compared the MEM results with direct estimates in
imaginary time, as described in detail below. Similarly,
we use QMC methods to calculate the imaginary time
correlation function P (r, ⌧) = ha†(r, ⌧)a(0, 0)i, where the
bosonic creation operator is a† = exp i✓(r, ⌧), and we
obtain the spectral function ImP (!) using the MEM.

Superconductor: We first discuss the SC and insu-
lating state in both the clean and disordered systems,
before turning to the quantum critical point. The SC
state is characterized by a non-zero superfluid sti↵ness
⇢
s

(see Fig. 2). We use our calculated ⇢
s

to test the
sum rule for the MEM-derived optical conductivity. The
total spectral weight is given by

R1
0

d! Re�(!) =
⇡h�k

x

i/2, where h�k
x

i is the kinetic energy. We find
that

R1
0+

d! Re�(!) (note the lower limit of 0+) cal-
culated from the MEM result di↵ers from h�k

x

i by an
amount that is exactly accounted for by the delta func-
tion ⇢

s

�(!). We have checked this sum rule both in the
clean and the disordered systems (see Appendix B).

In the clean superconductor (Fig. 3(a)), Re�(!) shows
finite spectral weight above a threshold. Note that in
the bosonic model, the cost of making electron-hole ex-
citations is essentially infinite (i.e., much larger than all

scales of interest). Phase fluctuations of the order param-
eter,  = A exp(i✓), lead to a current j ⇠ Im ⇤r ⇠
|A|2r✓. This then leads to the absorption threshold36,37

for creating a massive amplitude excitation (Higgs mode)
and a massless phase excitation (phonon). Hence, we
identify the threshold in Re�(!) with the Higgs scale
!Higgs. We emphasize that even though the microscopic
model (1) has only phase degrees of freedom, its long-
wavelength behavior upon coarse-graining contains both
amplitude (Higgs) and phase fluctuations (phonons and
vortices). In addition, one can show that Re�(!) has
a !5 tail at low energies arising from three-phonon ab-
sorption in a clean SC. The large power-law suppression,
together with a very small numerical prefactor38, how-
ever, makes this spectral weight too small to be visible
in our numerical results for Re�(!).

As E
c

/E
J

is tuned to reach the SIT in the clean sys-
tem, ⇢

s

decreases and vanishes at the transition; see
Fig. 2. We also find that the Higgs scale goes soft upon
approaching the quantum critical point, as expected.

The disordered SC results di↵er in several ways from
those of the clean system. First, the superfluid sti↵ness
⇢
s

is reduced by disorder, vanishing at the SIT upon tun-
ing the transition by disorder p. An important di↵erence
is the absence of a discernible Higgs threshold in Re�(!)
for the disordered SC; see Fig. 3(b). Qualitatively we can
understand this by the fact that once disorder breaks mo-
mentum conservation even single-phonon absorption is
permitted and one no longer needs a multi-phonon pro-
cess for absorption. The e↵ect of long-range Coulomb
interactions, which change the phonon dispersion (⇠ q)
to that of a 2D plasmon (⇠ p

q), is an important open
problem.

While the delta function in Re�(!) cannot be directly
detected in dynamical experiments, its Kramers-Kronig
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> SETUP: Dirty Holo (s-wave) Superconductor

[Hartnoll et al’08]
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> SETUP: Dirty Holo (s-wave) Superconductor
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> SETUP: Solving the background ….….….….…
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> Results: The Inhomogeneous Condensate
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> Results: ISLANDS?

> Let’s plot the minimum of the condensate
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> Results: Phase transition @ finite disorder

> Let’s plot the average of the condensate vs Temperature
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> Results: Phase transition @ finite disorder

> Average of the condensate vs Temperature…
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[See Griffiths’ phases… T. Vojta, PRL’03]



> Computing the conductivity    [➩ Superfluid density]
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➠ 4 Coupled linear PDEs

> Reminder: Homogeneous case
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µ = 5 ! T ⇠ 0.8Tc

L
x

= 80⇡ , 9 modes

> Noisy conductivity
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µ = 5 ! T ⇠ 0.8Tc> Noisy conductivity

> The AC Conductivity [averaged over x]
L
x

= 20⇡ , 9 modes
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from the SC delta
[See also Donos&Gauntlett, 1409.6875]



> Noisy AC conductivity
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> The AC Conductivity. Large disorder [Higgs mode?]
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Figure 2 | Tunnelling versus optical spectroscopy. a,b, Experimental results on low-disorder NbN samples. a, Measured tunnelling conductance
normalized to the normal state conductance G/Gn (green triangles) alongside a fit to BCS (black line) with a Dynes broadening parameter, � . b, Real part
of the dynamical conductivity, �1, versus frequency (energy) at temperatures below and above Tc =9.5 K. The low-temperature curve is fitted (green line)
to Mattis–Bardeen theory using the energy gap value obtained in the corresponding tunnelling result, �t. c, Summary of the quasiparticle tunnelling gap, �t
(green symbols), measured by planar tunnelling junctions or scanning tunnelling microscopy (STM), versus ⌦ , the frequency at which �1(!) is minimal
(blue symbols), obtained from optical spectroscopy for several superconducting NbN and InO films spanning the di�erent degrees of disorder. Whereas
the quasiparticle gap, �t, remains fairly unchanged with increasing disorder, and basically falls on the BCS strong coupling limit ratio, ⌦ is significantly
suppressed. According to Mattis–Bardeen theory, for ideal superconductors �1 is minimal at a frequency ⌦ that corresponds to 2�. The discrepancy
between both spectroscopic probes increases towards the highly disordered limit, signalling the presence of additional modes superimposed on the
quasiparticle response. The solid red line corresponds to the analytical prediction of mH close to a QPT calculated by Podolsky and colleagues12.
d,e, Experimental results on highly disordered NbN samples. d, Measured tunnelling conductance normalized to the normal state conductance G/Gn
(green triangles) together with a fit to BCS (black line) with a Dynes broadening parameter, � . e, Real part of the dynamical conductivity, �1, versus
frequency (energy) at temperatures below and above Tc =4.2 K. The low-temperature curve is fitted (green line) to Mattis–Bardeen theory using the
energy gap value obtained in the corresponding tunnelling result. Unlike the case of the low-disorder sample, these two curves di�er. The excess spectral
weight, marked in yellow and defined as the di�erence between the curves, is attributed to the Higgs contribution, � H

1 (see text). The error bars for �1 in the
graphs are determined by the distortion of the Fabry–Perot oscillations due to parasitic radiation, standing waves and electronic noise.

towards low frequencies is not at all captured by BCS theory (green
curve). In fact, using �t extracted from corresponding tunnelling
experiments, as seen in Fig. 2d, yields a curve which is significantly
below �

exp
1 (!). With increasing disorder, both the discrepancy

between 2�t and ⌦ and the insu�ciency of Mattis–Bardeen
fits become progressively worse. This trend is demonstrated in
Fig. 2c, where we compare results from both techniques on a
large number of NbN and InO samples spanning the various
degrees of disorder (measured in terms of the normalized critical
temperature, T̃c =Tc/T clean

c ). For small disorder, T̃c ' 1, tunnelling
and THz spectroscopy yield the same value for the superconducting
energy gap. On increasing disorder (decreasing T̃c) the discrepancy
becomes more and more pronounced. For the most-disordered
samples, we find about one order of magnitude di�erence between
corresponding values. We assign these di�erences to an absorption
process stemming from the Higgs mode that becomes progressively
prominent as the systemapproaches the quantumcritical point. This
explains the discrepancy in the sense that ⌦ in the strong-disorder
limit no longer equals 2� as a consequence of the additional
conductivity �H

1 (!) of the emergent Higgs mode. The previously
prominent spectral feature marking the gap frequency is now
hidden in the shoulder at higher frequencies. Although a distinct
experimental determination of⌦ becomes progressively di�cult as
it is pushed to low frequencies, we note the resemblance between
⌦ and the theoretical prediction ofmH in the vicinity of the critical
point12, as seen in Fig. 2c.

We now explore the evolution of the observed additional excess
weight associated with the Higgs conductivity, �H

1 (!), as defined
in equation (2), and compare these measured results with recent
numerical simulations detailed in ref. 25 and sketched in Fig. 1b.
Figure 3a shows the measured �H

1 (!) for three disordered NbN
films with di�erent critical temperatures Tc =6.7, 5 and 4.2 K and
the theoretical calculation for corresponding values of disorder
p=0.075, 0.1 and 0.125. We note that one cannot expect a perfect
quantitative agreement since the theory assumes that 2� is much
larger than the Higgs mode energy, whereas experimentally they
are of the same order of magnitude. Nevertheless, the overall
behaviour—and even quantitative trends—is shared by theory
and experiment: There is a pronounced peak of �H(!), which
shifts towards smaller frequencies and becomes sharper with
increasing disorder.

The appearance of the Higgs mode must go along with a
redistribution of the spectral weight, as this quantity is strictly
conserved; it measures the total charge carrier density N in the
system26. In accordance with the bosonic model of the SIT sketched
above, the strength of the �-peak—that is, the superfluid density
⇢s—dwindles to zero in the vicinity of the quantum critical point.
Figure 3b shows ⇢s for disordered NbN films extracted from the
imaginary part of the conductivity, using equation (3), and N in
the normal state obtained from Hall measurements. While ⇢s is
reduced by about two orders or magnitude with increasing disorder,
N is much less a�ected. According to the Ferrell–Tinkham–Glover

190 NATURE PHYSICS | VOL 11 | FEBRUARY 2015 | www.nature.com/naturephysics

[Sherman et al, Nature Phys 11, 188–192 (2015)]
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> The AC Conductivity. [Higgs mode…]
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The Goldstone QNM has a massive partner…

In the broken phase, the equations of motion read

0 = f⌘00 + ⌘0
✓
f 0 +

2f

⇢

◆
+

✓
(�+ !)2

f
� k2

⇢2
�m2

◆
⌘ , (36)

0 = f�00 + �0
✓
f 0 +

2f

⇢

◆
+

✓
�2

f
+
!2

f
� k2

⇢2
�m2

◆
� � 2i!�

f
⇣ � i 

✓
!

f
at +

k

⇢2
ax

◆
,

(37)

0 = f⇣ 00 + ⇣ 0
✓
f 0 +

2f

r

◆
+

✓
�2

f
+
!2

f
� k2L2

r2
�m2

◆
⇣ +

2i!�

f
� +

2� 

f
at , (38)

0 = fa00t +
2f

⇢
a0t �

✓
k2

⇢2
+ 2 2

◆
at � !k

⇢2
ax � 2i! � � 4� ⇣ , (39)

0 = fa00x + f 0a0x +
✓
!2

f
� 2 

◆
ax +

!k

f
at + 2ik � , (40)

0 =
i!

f
a0t +

ik

⇢2
a0x + 2 0� � 2 �0 , (41)

where we have divided � = ⇣ + i� into real and imaginary part. The system (37)-(41) is
again the one studied in [15]. This sector, that also appears in the gauged model that will be
presented afterwards, decouples from the additional scalar fluctuation ⌘. Notice that even
if (36) is formally the same as in the normal phase, the background � is di↵erent leading to
non trivial features in the ⌘ sector such as the presence of a massless excitation.
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Figure 3: Real (left) and imaginary (right) parts of the lowest scalar QNMs as a function
of the chemical potential. Solid lines correspond to the unbroken phase. For the broken
phase dashed lines stand for modes of the additional scalar while dotdashed lines represent
the modes common to the U(1) holographic superconductor.

Figure 3 shows the spectrum of quasinormal excitations of the scalar doublet. In the
normal phase we have two degenerate copies of the spectrum that partially split after the
phase transition. It is clear that the two lowest excitations become massless at the critical
chemical potential and then remain massless in the superconducting phase. They can be
identified with the two Goldstone bosons at the phase transition. The rest of the excitations
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> OUTLOOK &To Do

>Disordered holo SCs: both s- and p-wave  [1308.1920, 1407.7526]


>1D Islands of Superfluidity


> ‘Disordered’ phase transition (non mean field)


>Conductivity: superfluid density  ➯ phase diagram, ~ Higgs mode


>Future Thin Films, backreaction (insulator?), . . .



> AND NOW, SOME ADDITIONAL SLIDES…



> Results: TENTATIVE PHASE DIAGRAM
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★ Enhancement and the island menace

disorder

Phase Diagram
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● ‘Disorder-induced superfluidity’, Dang et al, Phys. Rev. B 79, 214529

Seen before in CM (hard-core bosons)



★ Spectrum ‘renormalization’
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★ Spectrum ‘renormalization’
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● S-wave [1308.1920]

● [Hartnoll&Santos 1402.0872]

● Fundamental matter (D3-D5) [w/ M. Araújo, J. Lizana, I.S. Landea]

● FT: noisy U(1) @ finite T [D. Musso, I.S. Landea]

Hints of universality
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> Noisy chemical potential

● NOISE THROUGH RANDOM PHASES
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> Thermodynamic limit

● Thermo limit: Noise correlation length << System length


   > Flat spectrum noise: correlation length        1 / (grid size)/

● Condensate and Charge density are self-averaging in the thermo limit:
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> Thermodynamic limit

● Thermo limit: Noise correlation length << System length


   > Flat spectrum noise: correlation length        1 / (grid size)/

● Condensate and Charge density are self-averaging in the thermo limit:
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> Simulation #1 µ(x) = µ0 + ⇥
k⇤X
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● µ0 = 3.50 , � = 1.50 , w = 3.50 [µ0 < µc = 3.66]

Lx = 2π →  K0 = 1


Nz x Nx = 25 x 75



> Simulation #1 µ(x) = µ0 + ⇥
k⇤X
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> Simulation #2 µ(x) = µ0 + ⇥
k⇤X
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µ0 = 3.50 , � = 0 , w = 3.50



> Simulation #2 µ(x) = µ0 + ⇥
k⇤X
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