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Our questions today 
 
• study exact results in supersymmetric gauge theories  both at large N and finite N 
 “Exact”  =  all order in coupling, including both perturbative and non-pert contributions 

 
• How to extract the large N limit from the Seiberg-Witten curve? 

 
• N = 4 SYM has a smooth behavior from weak to strong coupling, but what about deformations of this? 
  - Add N = 2 mass deformation. This does not have a smooth behavior. There are phase transitions at     

 specific  values, l = 35.4, etc. 
 - N = 2  massive fundamental matter. The resulting theory has two quantum phases. 

 
 

 
 
 

 
 



Localization 

 

Exact partition function for N = 2 supersymmetric YM theories on S4,  with 
arbitrary matter content .                                [Pestun,  0712.2824] 

 
 
 

),,( 1 Naadiag  VEV of scalar of vector multiplet 

Partition function localizes to a finite dimensional integral over Coulomb moduli  

Consider SU(N) N = 2 supersymmetric YM theories on S4 , radius R 
 
Vector multiplet 

 
Matter hypermultiplet mass M                                                                                  adjoint or fundamental 
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Z = Z(g) is given in terms of a complicated integral which must still be computed  
to be able to understand how the partition function depends on the coupling. 

Z = Z(g)  
Exact g dependence 
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The one-loop factor 
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The different multiplets contribute as follows: 
 
 
Vector multiplet 
 
 
Adjoint hypermultiplet 
 
 
Fundamental hypermultiplet 
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How can we find Z(g)? 
The integrals are extremely complicated. 
As usual, when something is complicated, we consider limits  
 
 
I) Large N,  R arbitrary   (l = g2 N  fixed) 
 This implies two big simplifications that will allow us to determine Z exactly. 
 
a) At N  Infinity the integral is exactly determined by a saddle-point. 
b) Instantons do not contribute. zinst  1 , since  

 
 

 

II)     Finite N (e.g. SU(2))   but R Infinity 
 
a) The integral is also exactly determined by a saddle-point, as long as a saddle-point 

exists. 
b) Instanton contribution will be incorporated exactly using Seiberg-Witten curve. 
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Example - N = 4 Super Yang-Mills theory on S4 

•Instantons do not contribute. Zinst = 1 
 

• with our rules, 1-loop corrections cancel 
 

Gaussian matrix model: 
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          At large N the integral is dominated by a saddle-point. 
 
 
 
 
 
Introducing the eigenvalue density: 
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the saddle-point equation becomes 
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Eigenvalues are distributed in a semicircle 
(Wigner’s law) 
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There is a smooth dependence 
with l all the way from 0 to 
infinity.  
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Physical origin of phase transitions at R = infinity 

They are generic for N = 2 gauge theories. 
Why? Look at spectrum 
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The ai computed at the saddle-point are functions of the coupling. 

Mass spectrum in the background   ),,( 1 Naadiag 

Therefore every mass will be a function of the coupling. 
At weak coupling <<1, eigenvalues are small. As  increases, they grow and eventually some eigenvalue may 
hit the singularity where some of the hypermultiplet becomes massless. 
 
 
This produces a discontinuity in the free energy F = - ln Z, which contains the term 
 
 
 
 
Typically, the third derivative of the free energy is discontinuous.  
The theory undergoes a phase transition. 
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N  =  2 SQCD with 2Nf  massive hypermultiplets 

J.R and K. Zarembo, arxiv:1309.1004 
 

We assume Nf  <  N, in which case the theory is asymptotically free.  

The partition function computed by localization is given by                                 [Pestun,  0712.2824] 
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Dynamically generated scale 

The integral is determined by the saddle-point 
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Take large R (large sphere),  akR >>1 



 
Introducing the eigenvalue density r as before. Differentiating  the equation once, we find 
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The RHS has poles at  x  =   M  which may or may not lie within the eigenvalue distribution.  
The solution to the integral equation is different in each case. 
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By differentiating again, we get 

Two cases: 
r 

M - M 
m - m 

r 

M - M 
m - m 



2.  Strong coupling phase m > M.          (L > M/2) 
 

The poles sit within the eigenvalue distribution.  
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The first saddle-point equation determines m = m (L /M) 
 
The phase transition thus occurs when m = M, i.e. at Mc = 2 L 

1. Weak coupling phase m < M.         (L < M/2) 
 

The poles sit outside the eigenvalue distribution.  
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Free energy 
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in each phase we find a discontinuity in the third derivative of F 
Thus the transition is third order. 
 

 Computing 

The width of the eigenvalue distribution m  and F’’  as functions of the quark mass M.  
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From Seiberg-Witten                             
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Understanding how to reproduce these results from SW curve will allow us to study low rank groups including 
instanton effects 
 
SW computes holomorphic prepotential F(ak) in flat spacetime. 

 

This implies that 
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The identity includes coupling of the 
scalar to the curvature! –proportional 
to R2 (provides classical contribution) 

Large N saddle-point equations 
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Thus large N saddle occurs at a particular degenerating point of the SW curve where all the periods aDk vanish 



What does the condition aDk = 0 mean? (more generally, massless dyon singularity) 
 
Consider a SW curve 
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   points  branch

p(x) depends on  
- masses 
- coupling 
- moduli parameters {uk},  k =1,…, N-1 

x2 x3 x4 x5 x6           . . .   x2N x2N-1 x2N-2 

a1 a2 b1 

b2 

aN-1 

Define homology cycles an and bn  

form cmeromorphi SW,,
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x2 x3 x4 x5 
. . .   x2N x2N-1 x2N-2 

a1 a2 aN-1 

N-1 conditions for N-1 unknowns {uk} 
Substituting the solution for {uk}  into the prepotential, we find the free energy F(M,l) at large N 



Example: SQCD 

Consider the Seiberg-Witten curve that describes N = 2 SU(N) gauge theory coupled to two 
fundamental hypermultiplets of mass M  
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We are interested in the  degenerating limit 
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We must demand that N-1 roots of p(x) are double roots, i.e. we must find the ui for which p(x) takes the form 
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The general condition is that p’(x) shares the same roots ci as p(x) 
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In the continuum, large N limit, the equation is transformed into an integral equation 
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reproducing exactly the same integral equation that we found from localization. 
 
The parameter m is determined by demanding that the roots also solve p(x) = 0  
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which reproduces the first derivative of the saddle-point equation in the localization 
partition function 



Example: N = 2 SU(2) SYM with two flavors 
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The branch points are at the three roots e1 , e2 , e3 of the cubic polynomial. 
•The cycle a defining aD  surrounds  e1  , e2 .  
•The cycle b defining a  surrounds e2  , e3 .  
 
Our aim is to compute the prepotential at one of the singularities of the curve where aD = 0. 
The singularities are located at  
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At u  u3,  and M < L/2, the cycle a defining aD shrinks to zero size, e1 e2 and  aD  0. 
 
If, instead, M > L/2, then e2  e3 the cycle a does not shrink. In this case aD is different from 0 in the whole 
complex u-plane. 
 
At M = L/2   , we have all    e1 , e2 , e3   branch points collapse. At this point a  M and the hypermultiplet 
becomes massless. 
 
It is an Argyres-Douglas point, first found in [Argyres, Plesser, Seiberg Witten]. 
Thus this point represents the critical point of our phase transitions. 
 
 

Finite N  
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Localization Seiberg-Witten 
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Computes Z(g) and VEV of ½ BPS Wilson loops <W> for 

SU(N) SYM compactified on a four-sphere 

Computes the exact holomorphic prepotential F(a) as a 

function of ak   labelling the Coulomb vacua: 
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where is a certain meromorphic one form in an 

auxiliary genus N-1 Riemann surface 

 

F(a) determines the low energy effective action 
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These are very different observables.  

 

•In localization, we integrate over ak.  

•In SW, the final result (prepotential) depends on ak. 

 

Both quantities contain exact information on the coupling. 

 

Is there any way to connect these results? 
 

Idea: take decompactification limit R =  infinity 

An integral with a large parameter (if we are lucky enough) may be 

dominated by a saddle-point {a1
* … ak

*} 

CLAIM: In the decompactification limit, the free energy F = - log Z is exactly given by the 
prepotential at its minimum: 

 
 
It represents a particular vacuum where the N-1 alpha cycles are collapsed to zero size.  
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Operator product expansion 

Use localization to compute non-perturbative physics.  
Example: all-order OPE. 
 
Consider dynamically generated scale Leff << M. Then observables admit an expansion 
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-The mass M in the denominator arises from expanding the effective action in local operators.  
-Powers of Leff in the numerator come from  the VEV of the local operators generated by the OPE.  
 
These VEV involve non-perturbative physics and are difficult to calculate. 
 
Having the exact formula for the free energy of SQCD, we can now compute the OPE. 
For M >> L , we can integrate out the hypermultiplet fields.  
What remains is pure gauge N = 2 SYM with dynamical scale 
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Lessons 

1. Massive N = 2 supersymmetric gauge theories exhibit quantum phase transitions at critical couplings.  

  Transitions occur when extra massless states contribute to the free energy. 

 

2. The complete free energy (both at finite and large N) is exactly given  in terms of  the prepotential 

evaluated at a singularity of  the Seiberg-Witten curve 

 

 

 

  where all ai cycles shrink to zero size. 

 

 

3. At the critical point of  the phase transitions a pair of  conjugate homology cycles shrink 

simultaneously. These are Argyres-Douglas points of  the curve, where mutually non-local states 

become massless. 

 

4. Recent important results: 

 

       - [Karch, Robinson, Uhlemann, arXiv:1509.00013] : Add Nf  << N massive fundamental matter to N = 4 theory. 

The theory contains the expected phase transitions. The free energy can be computed either by:  

 a) exact localization formulas o 

 b) or in terms of  the holographic dual, probe D7 branes in AdS5xS5, leading to a striking match. 

 

 - [Hollowood, Kumar. arxiv:1509.00716]  Seiberg-Witten  and saddle-points analysis for N = 2* theory at finite N. 

They compute finite N partition function for l<35.45 
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